RISK Summer School 2024

Design of fragility curves to characterize the vulnerability of structures under seismic loading

Sophie Capdevielle

Laboratoire 3SR, Univ. Grenoble-Alpes, CNRS, Grenoble INP - UGA

Graduate School@UGA RISK Thematic program

Context

- Why fragility curves ?
- More precision on fragility curves

2 Building fragility curves by simulation : example of a SDOF system

Opplication to a typology of masonry buildings

Context

- Why fragility curves ?
- More precision on fragility curves
- 2 Building fragility curves by simulation : example of a SDOF system

Application to a typology of masonry buildings

Context

Vulnerability of existing structures subject to external hazard

Shih-Kang Dam, Chi-Chi earthquake, 1999, Taiwan [Faccioli, 2008]

Church, L'Aquila earthaquake, 2009, Italy [Limoge, 2016]

Issues

- Structural safety
- Preservation of historical heritage

Need for a decision-support tool

RISK Summer School 2024

Requirements

- Relate the hazard to its effects on structures
- Account for uncertainties (hazard, structural state)
- \rightarrow Integration into a **probabilistic risk assessment approach**

Need for a decision-support tool

Introduction of fragility curves

Requirements

- Relate the hazard to its effects on structures
- Account for uncertainties (hazard, structural state)
- \rightarrow Integration into a probabilistic risk assessment approach

Fragility curve

Conditional failure probability $P_f(\alpha)$ (function of hazard intensity α)

2/15

RISK

Summer

School

Context

- Why fragility curves ?
- More precision on fragility curves

2 Building fragility curves by simulation : example of a SDOF system

Application to a typology of masonry buildings

Fragility curves : definition

Probability that the damage measure exceeds a defined threshold, given a hazard intensity.

 $P_f(\alpha) = P\left(DS \ge ds_i / \alpha\right)$

- DS : Damage State (damage indicator)
- *ds_i* : Pre-defined damage state threshold
- α : intensity measure

Applications

- Structures, components
- Stock of structures

All kind of hazards

RISK

Summer School

Examples

RISK Summer

Fragility of a reinforced concrete wall subject to snow avalanches [Favier et al., 2018] 0

Influence of the reinforcement ratio ρ

- Damage indicator : ultimate displacement of the middle of the wall
- Intensity mesasure : maximal pressure applied by the avalanche to the wall over time.

Fragility of a chuch subject to seismic hazard [Limoge, 2016]

- Damage indicator : Overturning of the top front panel between nave and choir.
- Intensity mesasure : Peak ground acceleration (maximum acceleration of the seismic signal over time).

 D_i : levels of damage thresholds

$$P = \int_{0}^{\alpha_{\max}} -P_{f}\left(\alpha\right) \frac{dH\left(\alpha\right)}{d\alpha} d\alpha$$

P: total probability of damage or failure, function of :

$$P = \int_{0}^{\alpha_{\max}} -P_{f}\left(\alpha\right) \frac{dH\left(\alpha\right)}{d\alpha} d\alpha$$

P: total probability of damage or failure, function of :

• $P_f(\alpha)$: probability of failure given a hazard intensity α .

RISK

Summer School

$$P = \int_{0}^{\alpha_{\max}} -P_{f}\left(\alpha\right) \frac{dH\left(\alpha\right)}{d\alpha} d\alpha$$

 ${\it P}$: total probability of damage or failure, function of :

- $P_f(\alpha)$: probability of failure given a hazard intensity α .
- $H(\alpha)$: Hazard curve (probability of exceeding intensity α .) $-\frac{dH(\alpha)}{d\alpha}$: probability of occurrence of the intensity α .

[Zentner, 2018, PIA SInaps@]

$$P = \int_{0}^{\alpha_{\max}} -P_f(\alpha) \frac{dH(\alpha)}{d\alpha} d\alpha$$

 ${\it P}$: total probability of damage or failure, function of :

- $P_f(\alpha)$: probability of failure given a hazard intensity α .
- $H(\alpha)$: Hazard curve (probability of exceeding intensity α .) $-\frac{dH(\alpha)}{d\alpha}$: probability of occurrence of the intensity α .
- \Rightarrow Sum over all the scenarii.

[Zentner, 2018, PIA SInaps@]

Context

- Why fragility curves?
- More precision on fragility curves

2 Building fragility curves by simulation : example of a SDOF system

Application to a typology of masonry buildings

Model of structure : SDOF oscillator RISK

Middle pier of a viaduct, pseudo-dynamically tested in Ispra (scale 1:2.5)

Seismic loading in the transverse direction [Pinto et al., 1996]

Numerical model as a single degree of freedom (SDOF) oscillator

 $m\ddot{u} + c\dot{u} + k = -m a_q$

- k, m computed from the real scale structure, with a natural frequency $f_0 = 1.7 Hz$
- $c = 2 m w_0 \xi$, with ξ chosen to be 5 %
- a_g: ground acceleration

ol

Numerical solution

RISK Summer School

Ground motion

Choice of accelerograms Here: from a synthetic database

Structural response

Numerical solution Newmark time integration scheme

Choice of an intensity measure

Here: Peak Ground Acceleration

Choice of a damage measure

Here: Maximum top displacement

Results

Example with 30 synthetic accelerograms

Response of the 1-DOF structure to the seismic signals

Statistical model of the obtained responses

Summer School

Lognormal fragility model [Zentner, 2017]

• Damage probability : fragility curve $P_f(\alpha) = P(DS \ge ds_i / \alpha)$

$$P_f(\alpha) = \Phi\left(\frac{\ln(\alpha/A_m)}{\beta}\right)$$

- Identification of parameters A_m , β using the cloud of responses :
 - Either by Maximum Likelihood Evaluation
 - Or by Linear regression (DS as a lognormal variable)

 $\ln(DS) = \ln(b) + c\ln(\alpha) + \ln(\eta)$

Fragility curves

Application to the example

- DS = maximum displacement, α = PGA
- Identification by linear regression
- Thresholds : $ds_1 = H/200 = 0.1 m$, $ds_2 = 50\% ds_1$.

bl

Context

- Why fragility curves?
- More precision on fragility curves

2 Building fragility curves by simulation : example of a SDOF system

Output to a typology of masonry buildings

Context

[Stocchi et al., 2021] Evaluate the effects of earthquakes on a building typology

Low to moderate seismic intensity

► Fragility curves

Compare predicted damage to in-situ observation

French masonry industrial buildings from the 19th century

Pictures from https://collections.isere.fr/ and [Poursoulis, 2017]

Structural model

- Global modelling strategy based on modal decomposition $\mathbf{U}(t) = \sum_{i} q_i(t) \mathbf{\Phi}_i$
- Identification of SDOF oscillators for each mode : $q_i(t)$ Material non-linearity: unilateral damage model

The LILLING

Structural typology

Mesh generation

Mode shapes Φ_i

Non linear pushover Applied displacement $\lambda \Phi$:

RISK

Summer School

Identification of the nonlinear SDOF response

Time history analysis of each SDOF oscillator

 $\ddot{q}_i + 2\xi_i \omega_i \dot{q}_i + f_i(q_i) = \Gamma_i a_q(t)$

Fragility curves

Summer School

Ground motion

Synthetic database of seismic signals Intensity measure : PGA

Structural response

Non linear SDOF model Damage measure : frequency drop-off

Resulting fragility curves - 200 case studies

EigenFrequency Drop Off (EFDO)

- DSI = 15% EFDO \rightarrow Slight damage
- DS2 = 30 % EFDO → Moderate damage

 $\label{eq:dispersion} \mathsf{Dispersion} \gets \mathsf{Influence} \ \mathsf{of} \ \mathsf{structural} \\ \mathsf{uncertainties}$

Conclusion

Fragility curves

Probability that the damage measure exceeds a defined threshold, given a hazard intensity.

 $P_f(\alpha) = P\left(DS \ge ds_i / \alpha\right)$

Need to define

- DS : Damage State (damage indicator)
- ds_i : Pre-defined damage state threshold
- α : intensity measure

Useful as a decision-support tool (probabilistic risk assessment
Can be used to improve hazard knowledge