RISK Summer School 2024

Better understand the vulnerability of hydraulic structures

Julien CHAUCHAT Chaire Oxalia/LEGI-ENSE3 August 28th 2024

RISK Summer School 2024

<u>Leg</u>

Chaire d'excellence industrielle sur les Ecoulements Hydrauliques Multiphasiques

4 GRENOBLE INP Ense3 **UGA**

Julien CHAUCHAT LEGI / GINP-UGA / CNRS 30 juin 2022

ARTELIA

Thématiques

Ingénierie de l'environnement ans les leurs de la lien de l'environnement \bf{r}

- Affouillement
- Impact des dragages/envasement des retenues
- Génie urbain
- Recul du trait de côtes
- 3 thèmes prioritaires :

- Energie hydroélectrique ✓ Hydraulique des barrages ✓Stations de pompage
- Implémentation Hydroliennes

RISK Summer School 2024

- 1. L'affouillement autour de structure / scour around hydraulic structures
- 2. L'évolution morphologique des zones côtières et des eaux intérieures
- 3. La modélisation des mélanges air-eau

RISK Summer School 2024

Scour around hydraulic structures: the main cause for bridge failures

Julien CHAUCHAT Chaire Oxalia/LEGI-ENSE3 August 28th 2024

Outline

RISK Summer School 2024

- Motivations
- Analysis of recent bridge failure in the USA
- Flow and sediment transport processes
- Numerical modeling
- A case study: the bridge pile of the LGV Paris-Bordeaux
- Development of a new generation of numerical model for scour

Motivations

Collapse of one of the two RN1 bridges over the Saint-Etienne river during cyclone Gamède on Reunion Island, February 25, 2007.

Arrival of the first four jackets for the future Saint Brieuc wind farm in the port of Bres

Analysis of recent bridge failure in the USA

Table 4. Number of Principal Causes of Failure

Analysis of Recent Bridge Failures in the United States

Kumalasari Wardhana¹ and Fabian C. Hadipriono, P.E., F.ASCE²

Journal of Hydraulic Engineering 2003

RISK Summer School 2024

Analysis of recent bridge failure in the USA

➢700,000 bridges in the United States (2002) ~ 500 failures between 1989 and 2000 \triangleright Age of collapsed bridges: 1 year - 157 years Average lifetime = 52 years ➢2,500 new bridges / year (FHWA, USA, 2000) Table 5. Type and Number of Failure Causes

Roulund et al. (2005)

Flow around cylinders

National Committee for Fluid Mechanics Films (NCFMF) : <https://web.mit.edu/hml/ncfmf.html> Flow Instabilities, E. L. Mollo-Christensen (MIT)

Flow around cylinders

$$
\triangleright
$$
 Reynolds number: $Re_D = \frac{VD}{v}$

where V is the mean flow velocity, D is the cylinder

diameter and ν is the fluid kinematic viscosity

 \triangleright Typical values for bridges:

 \checkmark D = 10 m

 $V = 1 m/s$

Figure 1.1 Regimes of flow around a smooth, circular cylinder in steady current.

Horseshoe vortex

 \triangleright The cylinder imposes an arrest pressure to the upstream flow which generates a strong adverse pressure gradient

- \triangleright The flow separates and a vortex system is generated:
	- \checkmark The horseshoe vortex system

Horseshoe vortex

which generates a strong adverse pressure gradient

 \triangleright The flow separates and a vortex system is generated:

Fig. 1. a The horse-shoe vortex system in the plane of symmetry upstream of the cylinder at $Re(D) = 20,000$; wire position: $X/D = -1.83$ $Dargahi (1989)$ **Fig. 3.** The topological structure of the flow upstream of the cylinder and

Flow and sediment transport processes

Melville and Sutherland (2009)

RISK Summer School 2024

Flow and sediment transport processes

RISK Summer School 2024

➢Reynolds-Averaged Navier-Stokes equations

$$
\begin{aligned}\n\frac{\partial \langle u_i \rangle}{\partial x_i} &= 0 \\
\frac{\partial \langle u_i \rangle}{\partial t} + \frac{\partial \langle u_i \rangle \langle u_j \rangle}{\partial x_j} &= -\frac{\partial \langle p^* \rangle}{\partial x_i} + \frac{\partial}{\partial x_j} \left(2(\nu + \nu_T) \langle S_{ij} \rangle \right)\n\end{aligned}
$$

➢Turbulence models

K-Epsilon or K-Omega SST, e.g.

$$
\nu_T = C_\mu \frac{k^2}{\epsilon}
$$

M2 Matthias Renaud Funded by OXALIA Superviors: C. Bonamy (LEGI), T. Oudart (ARTELIA),O. Bertrand (ARTELIA), M. De Linares (ARTELIA)

➢ OpenFOAM versus TELEMAC3D

- ✓ Different numerical methods : Finite Volume Method vs Finite Element Method
- ✓ Different meshing strategies : Fixed unstructured grid vs Sigma coordinate (terrain following + free surfad
- \checkmark TELEMAC3D has been developed for large-scale problems while OpenFOAM is well-suited for small-scale

➢ Coherent structures around the cylinder (HSV and VS)

RISK Summer School 2024 ozialia

Vorticity Z 0.6 0.8 1.0e+00 $-1.0e + 00$ -0.2 0.4 -0.6 -0.4 0.2

Telemac3D K-epsilon

M2 Matthias Renaud Funded by OXALIA Superviors: C. Bonamy (LEGI), T. Oudart (ARTELIA), O. Bertrand (ARTELIA), M. Linares (ARTELIA)

➢ Validation on streamwise velocity profiles

 \checkmark OpenFOAM > TELEMAC3D for near field

Telemac3D : K-epsilon *M2 Matthias Renaud Funded by OXALIA Superviors: C. Bonamy (LEGI), T. Oudart (ARTELIA),O. Bertrand (ARTELIA), M. De Linares (ARTELIA)* Exp : Roulund et al. JFM (2005)

RISK

Summer

School

oxialia

Sediment transport modeling

 \triangleright Sediment particles at the bed will start to move as soon as the fluid velocity exceeds a given critical velocity for which the driving force exceeds the stabilizing one.

Driving force : $F_D = \frac{1}{2} \rho_f \frac{\pi}{4} d^2 C_D U_f^2$ Stabilizing force : $F_S = \mu_s$ $W = \mu_s (\rho_p - \rho_f) g \frac{\pi}{6} d^3$ W $\implies \mu_s$ Friction coef. = tan(angle of repose) The sediment starts to move when $F_D = F_S \Longrightarrow \frac{1}{2} \rho_f \frac{\pi}{4} d^2 C_D U_{fc}^2 = \mu_s (\rho_p - \rho_f) g \frac{\pi}{6} d^3$ θ' =t_b/(γ _s- γ)d = U_f^{12} /(s-1)gd U_f^2 $O₂$ \triangleright Critical Shields number: $\theta_{cr} =$ $\overline{\rho p}$ $O.1$ $(\rho_f^{}\!\!-\!\!1)gd$ $\sqrt{}$ 0.06 0.04 Laminar Turbulent flow at beds flow at bed 0.02 0.01 100 400 1000 1.0 40

RISK

z

u

屺

 $Re = U_f d / V$

Fredsoe and Deigaard (1992)

Sediment transport modeling

Bed-load

 $\theta \approx \theta_c$

RISK Summer School 2024

 $O(cm)$

 $O(mm)$
 $10-20 d$

 $\begin{array}{c}\n\begin{array}{c}\n\text{dim}\n\\ \text{dim}\n\end{array} \\
\begin{array}{c}\n\text{dim}\n\\ \text{dim}\n\end{array} \\
\begin{array}{c}\n\text{dim}\n\\ \text{dim}\n\end{array} \end{array}$

С

Pick-up

Sediment transport modeling

 \triangleright Alternative approach: two-phase flow simulations

max

RISK

Summer

Pros

- Simple
- Applicable at large-scale

Cons

- Empirical formulas
	- Especially bed-load
	- Large scatter (~100%)
	- ▶ Missing physics
- Arbitrary separation between bed-load and suspended-load

 \triangleright First two-phase flow simulation pf the scour process

School

➢ Reasonable agreement with experimental data from Roulund et al. JFM (2005)

- ➢ Proof of concept that two-phase flow models can reproduce scour processes
- ➢ CPU cost is huge (2 months on 128 cores for 600s): not reasonable for Engineering applications

State-of-the-art in engineering

➢ 0D modeling: Riprap size design

$$
\checkmark d_{50} \propto h \left(\frac{V}{\sqrt{(s-1)h}} \right)^{2.5}
$$
 (HEC-23)

- ➢Physical modeling
	- \checkmark Scale issue
	- ✓ High cost

 \triangleright Numerical modeling (mostly hydrodynamic simulations)

 \times 2D

 $\sqrt{3D}$

\triangleright Initial design of the Dordogne viaduct (2012)

 \checkmark Physical model of pile P11/P12 using movable bed to quantify scouring and determine a protection solution (2012) => Monitoring and filling

 \checkmark Viaduct built and LGV line in service since July 2, 2017

 \checkmark Bathymetric monitoring => depths reaching levels qualified as "vigilance »

- ➢ Scour analysis (2021)
	- \checkmark Expert analysis : greater-than-expected emergence of the footing above the bed
	- \checkmark Implementation of a local 3D model (using OpenFOAM) of the pile simulated in Jet plongeant the physical model

Physical model configuration Raised footing configuration

RISK

Summer

School

Bed shear stress increased from 150 N/m² to 180 N/m² (extrapolated at field scale)

 \triangleright Scour analysis (2021)

 \checkmark Bed shear stress increased from 150 N/m² to 180 N/m²

 \checkmark Stability criteria : $\theta = \frac{\tau_b}{\sqrt{2\pi}}$ $\frac{\mu_b}{\rho_s - \rho_f}$ $\frac{\partial}{\partial g} > \theta_c$

 \Rightarrow For a given value of bed shear stress we deduce

the largest particle size that can be transported

- \checkmark The riprap used for scour protection is d₅₀=0.2 m
	- \Rightarrow For τ_h = 150 N/m² θ = 0.046

 \Rightarrow For τ_b = 180 N/m² θ = 0.055

In both scenario the stability is uncertain (θ close to θ_c)

These simulations suggest that the expert hypothesis is correct: the increase in footing height generate larger scour

RISK

Summer

➢ Scour analysis (2021)

 \checkmark Coupling of a 3D model of the Dordogne section (using TELEMAC 3D) with a local

OpenFOAM model representative of pile P12

RISK

Summer

School

2024

 $\frac{-1820}{3820}$

3790

 -1800

➢ Scour analysis (2021)

 \checkmark Formation of a strong horseshoe vortex upstream the footing is responsible for

RISK

Summer

School

- \triangleright Scour analysis (2021)
	- ✓ Solution:
		- riprap refilling with larger particles to increase the intrinsic stability
		- $d_{50} = 0.4 \text{ m} \Rightarrow \theta = 0.023 < \theta_c$
- ➢ Conclusion & perspectives
	- \checkmark This study illustrates how 3D numerical simulations may be used to analyze scour and propose remediation solutions
	- \checkmark Main limitation: no sediment transport or morphodynamic evolution in simulations
		- Developing such a model is one of the goal of the OXALIA chair

A new generation of numerical model

➢ **Thèse M. Renaud (2022-2025)**

- Development of an open-source operational morphodynamic model
- \checkmark Scouring: preventing the risk of hydraulic structure failure

RISK

Conclusion & perspectives

- \triangleright Scour is one of the main risk for hydraulic structures collapse
	- \checkmark ~ 50% for bridge piers in the USA
- ➢Coherent structures/vortices responsible for the digging of the river bed
- ➢Scour protection such as riprap are estimated using empirical formulas
- ➢Hydrodynamic parameters are obtained from physical or numerical models
- ➢Goal of OXALIA chair: develop a new generation of model capable of simulating the flow and the bed evolution around hydraulic structures for practical applications

Upscaling

RISK Summer School 2024

Logos / Éléments graphiques individuels

FRANCE

RISK Summer **School** 2024

4 GRENOBLE

Graduate School@UGA RISK Thematic program