RISK Summer School 2024

# Better understand the vulnerability of hydraulic structures

Julien CHAUCHAT Chaire Oxalia/LEGI-ENSE3 August 28th 2024





#### RISK Summer School 2024

Leg

#### Chaire d'excellence industrielle sur les Ecoulements Hydrauliques Multiphasiques



GRENOBLE ENSE

Julien CHAUCHAT LEGI / GINP-UGA / CNRS

30 juin 2022



## **Thématiques**

#### Ingénierie de l'environnement

- Affouillement
- Impact des dragages/envasement des retenues
- Génie urbain
- Recul du trait de côtes
- 3 thèmes prioritaires :

#### **Energie renouvelable**

- Energie hydroélectrique
   ✓ Hydraulique des barrages
   ✓ Stations de pompage
- Implémentation Hydroliennes

- 1. L'affouillement autour de structure / scour around hydraulic structures
- 2. L'évolution morphologique des zones côtières et des eaux intérieures
- 3. La modélisation des mélanges air-eau



RISK Summer School 2024

# Scour around hydraulic structures: the main cause for bridge failures

Julien CHAUCHAT Chaire Oxalia/LEGI-ENSE3 August 28th 2024



# Outline

- Motivations
- Analysis of recent bridge failure in the USA
- Flow and sediment transport processes
- Numerical modeling
- A case study: the bridge pile of the LGV Paris-Bordeaux
- Development of a new generation of numerical model for scour



#### **Motivations**



Collapse of one of the two RN1 bridges over the Saint-Etienne river during cyclone Gamède on Reunion Island, February 25, 2007.





Arrival of the first four jackets for the future Saint Brieuc wind farm in the port of Brest





## Analysis of recent bridge failure in the USA

| Principal cause | Collapse | Distress |
|-----------------|----------|----------|
| Design          | 2        | 1        |
| Detailing       | 0        | 0        |
| Construction    | 11       | 2        |
| Maintenance     | 37       | 6        |
| Material        | 4        | 2        |
| External        | 415      | 5        |
| Others (NA)     | 17       | 1        |
| Total           | 486      | 17       |

#### Table 4. Number of Principal Causes of Failure

#### Analysis of Recent Bridge Failures in the United States

Kumalasari Wardhana<sup>1</sup> and Fabian C. Hadipriono, P.E., F.ASCE<sup>2</sup>

Journal of Hydraulic Engineering 2003

# Analysis of recent bridge failure in the USA

700,000 bridges in the United States (2002)
 500 failures between 1989 and 2000
 Age of collapsed bridges: 1 year - 157 years
 Average lifetime = 52 years
 2,500 new bridges / year (FHWA, USA, 2000)

Table 5. Type and Number of Failure Causes

|   | Failure causes and events | Number of occurrences | Percentage of total |
|---|---------------------------|-----------------------|---------------------|
| ľ | Hydraulic                 | 266                   | 52.88               |
|   | Flood                     | 165                   | 32.80               |
|   | Scour                     | 78                    | 15.51               |
|   | Debris                    | 16                    | 3.18                |
|   | Drift                     | 2                     | 0.40                |
|   | Others                    | 5                     | 0.99                |
|   | Collision                 | 59                    | 11.73               |
|   | Auto/truck                | 14                    | 2.78                |
|   | Barge/ship/tanker         | 10                    | 1.99                |
|   | Train                     | 3                     | 0.60                |
|   | Other                     | 32                    | 6.36                |
|   | Overload                  | 44                    | 8.75                |
|   | Deterioration             | 43                    | 8.55                |
|   | General                   | 22                    | 4.37                |
|   | Steel deterioration       | 14                    | 2.78                |
|   | Steel-corrosion           | 6                     | 1.19                |
|   | Concrete-corrosion        | 1                     | 0.20                |
|   | Fire                      | 16                    | 3.18                |
|   | Construction              | 13                    | 2.58                |
|   | Ice                       | 10                    | 1.99                |
|   | Earthquake                | 17                    | 3.38                |
|   | Fatigue-steel             | 5                     | 0.99                |
|   | Design                    | 3                     | 0.60                |
|   | Soil                      | 3                     | 0.60                |
|   | Storm/hurricane/tsunami   | 2                     | 0.40                |
|   | Miscellaneous/other       | 22                    | 4.37                |
|   | Total                     | 503                   | 100.00              |



#### **Flow around cylinders**



National Committee for Fluid Mechanics Films (NCFMF) : <u>https://web.mit.edu/hml/ncfmf.html</u> Flow Instabilities, E. L. Mollo-Christensen (MIT)



### Flow around cylinders

> Reynolds number: 
$$Re_D = \frac{V D}{v}$$

where V is the mean flow velocity, D is the cylinder

diameter and  $\nu$  is the fluid kinematic viscosity

> Typical values for bridges:

✓ D = 10 m

✓ V = 1 m/s

$$Re_{D} = 10^{7}$$

| a) |            | No separation.<br>Creeping flow                                                                                  | Re < 5                                                                       |
|----|------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| ь) |            | A fixed pair of symmetric vortices                                                                               | 5 < Re < 40                                                                  |
| c) | -0.3       | Laminar<br>vortex<br>street                                                                                      | 40 < Re < 200                                                                |
| d} | -0.3       | Transition<br>to turbulence<br>in the wake                                                                       | 200 < Re < 300                                                               |
| e) |            | Wake completely turbulent.<br>A:Laminar boundary layer<br>separation                                             | 300 < Re < 3×10 <sup>5</sup><br>Subcritical                                  |
| f  | - <u>-</u> | A:Laminar boundary<br>layer separation<br>B:Turbulent boundary<br>layer separation;but<br>boundary layer laminar | $3 \times 10^5 < \text{Re} < 3.5 \times 10^5$<br>Critical (Lower transition) |
| g) | - BROW     | B: Turbulent boundary<br>layer separation;the<br>boundary layer partly<br>laminar partly turbulent               | $3.5 \times 10^5 < \text{Re} < 1.5 \times 10^6$<br>Supercritical             |
| h) | -O.J.      | C: Boundary layer com-<br>pletely turbulent at<br>one side                                                       | 1.5×10 <sup>6</sup> < Re < 4×10 <sup>6</sup><br>Upper transition             |
| 1) | -000       | C: Boundary layer comple-<br>tely turbulent at<br>two sides                                                      | 4×10 <sup>6</sup> < Re<br>Transcritical                                      |

Figure 1.1 Regimes of flow around a smooth, circular cylinder in steady current.

#### Horseshoe vortex

The cylinder imposes an arrest pressure to the upstream flow which generates a strong adverse pressure gradient

- > The flow separates and a vortex system is generated:
- BED WIRE 0,5 s IND
- ✓ The horseshoe vortex system

Fig. 1. a The horse-shoe vortex system in the plane of symmetry upstream of the cylinder at Re(D) = 20,000; wire position: X/D = -1.83and Z/D = 0; b the horse-shoe vortex system in a horizontal plane close to the bed (y/Ym = 0.005), upstream of the cylinder at Re(D) = 20,000 Dargahi (1989)



Horseshoe

Sumer et al. (1997)

#### Horseshoe vortex

which generates a strong adverse pressure gradient

 $\succ$  The flow separates and a vortex system is generated:





### Flow and sediment transport processes



Melville and Sutherland (2009)

### Flow and sediment transport processes





Reynolds-Averaged Navier-Stokes equations

$$\begin{aligned} \frac{\partial \langle u_i \rangle}{\partial x_i} &= 0\\ \frac{\partial \langle u_i \rangle}{\partial t} + \frac{\partial \langle u_i \rangle \langle u_j \rangle}{\partial x_j} &= -\frac{\partial \langle p^* \rangle}{\partial x_i} + \frac{\partial}{\partial x_j} \left( 2(\nu + \nu_T) \langle S_{ij} \rangle \right) \end{aligned}$$

#### > Turbulence models

$$u_T = rac{C_\mu}{\epsilon} rac{k^2}{\epsilon}$$



M2 Matthias Renaud Funded by OXALIA Superviors: C. Bonamy (LEGI), T. Oudart (ARTELIA), O. Bertrand (ARTELIA), M. De Linares (ARTELIA)

#### OpenFOAM versus TELEMAC3D

- Different numerical methods : Finite Volume Method vs Finite Element Method
- ✓ Different meshing strategies : Fixed unstructured grid vs Sigma coordinate (terrain following + free surface)
- ✓ TELEMAC3D has been developed for large-scale problems while OpenFOAM is well-suited for small-scale

Coherent structures around the cylinder (HSV and VS)



RISK Summer School 2024 Ocialia



Vorticity Z -1.0e+00 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0e+00



 Vorticity Z
 0.4
 0.6
 0.4
 0.2
 0.4
 0.6
 0.8
 1.0e+00
 TELEMAC-3D:
 Coherent structures using Q-criterion
 Coherent structures using Q-criterion
 Coherent structures using Q-criterion

Telemac3D K-epsilon

M2 Matthias Renaud Funded by OXALIA Superviors: C. Bonamy (LEGI), T. Oudart (ARTELIA), O. Bertrand (ARTELIA), M. D Linares (ARTELIA)

Validation on streamwise velocity profiles



✓ OpenFOAM > TELEMAC3D for near field

D=0.54m  $Re_{D} = 1.7 \ 10^{5}$ ocalia openFOAM : K-omega SST Telemac3D : K-epsilor Exp: Roulund et al. JFM (2005) M2 Matthias Renaud Funded by OXALIA Superviors: C. Bonamy (LEGI), T. Oudart (ARTELIA), O. Bertrand (ARTELIA), M. De Linares (ARTELIA)

**RISK** 

Summer

School

## Sediment transport modeling

Sediment particles at the bed will start to move as soon as the fluid velocity exceeds a

given critical velocity for which the driving force exceeds the stabilizing one.

Driving force :  $F_D = \frac{1}{2}\rho_f \frac{\pi}{4}d^2 C_D U_f^2$ Stabilizing force :  $F_S = \mu_s W = \mu_s (\rho_p - \rho_f) g \frac{\pi}{6} d^3$  $\implies \mu_s$  Friction coef. = tan(angle of repose) The sediment starts to move when  $F_D = F_S \Longrightarrow \frac{1}{2} \rho_f \frac{\pi}{4} d^2 C_D U_{fc}^2 = \mu_s (\rho_p - \rho_f) g \frac{\pi}{6} d^3$  $\theta' = \tau_b'/(\gamma_s - \gamma)d = U_f'^2/(s - 1)gd$ 0.2 > Critical Shields number:  $\theta_{cr} = \frac{U_f^2}{(\rho_{p_f} - 1)gd}$ 0.1 0.06 0.04 Laminar Turbulenít flow at bed flow at bed  $\tau_0 = \tau_c$ 0.02 0.01 100 400 1000 1.0 40 Fredsoe and Deigaard (1992)  $Re = U_{f}^{\prime}d/v$ 

RISK

**۱**۲

u

## Sediment transport modeling





Bed-load

 $\theta \approx \theta_c$ 





S <1

Shields number: 
$$\theta = \frac{\tau_b}{(\rho_s - \rho_f)gd}$$
 or  $\frac{u_*^2}{\left(\frac{\rho_s}{\rho_f} - 1\right)gd}$ 

Suspension number: 
$$S = \frac{u_*}{w_s}$$
 where  $w_s$  is the settling velocity

RISK Summer School 2024

Suspended-load C Settling Pick-up flux flux Bed-load qb

Immobile bed

### Sediment transport modeling



Pros

Cons

• Simple

Applicable at large-scale

Especially bed-load

Large scatter (~100%)

Empirical formulas

Missing physics

> Alternative approach: two-phase flow simulations



max

First two-phase flow simulation pf the scour process



Summer

School



- Reasonable agreement with experimental data from Roulund et al. JFM (2005)
- > Proof of concept that two-phase flow models can reproduce scour processes
- > CPU cost is huge (2 months on 128 cores for 600s): not reasonable for Engineering applications

# State-of-the-art in engineering

> 0D modeling: Riprap size design

$$\checkmark d_{50} \propto h \left( \frac{V}{\sqrt{(s-1)h}} \right)^{2.5}$$
 (HEC-23)

- Physical modeling
  - ✓ Scale issue
  - ✓ High cost

> Numerical modeling (mostly hydrodynamic simulations)

✓ 2D

✓ 3D



#### > Initial design of the Dordogne viaduct (2012)

 ✓ Physical model of pile P11/P12 using movable bed to quantify scouring and determine a protection solution (2012) => Monitoring and filling

 $\checkmark$  Viaduct built and LGV line in service since July 2, 2017

✓ Bathymetric monitoring => depths reaching levels qualified as "vigilance »





- Scour analysis (2021)
  - ✓ Expert analysis : greater-than-expected emergence of the footing above the bed
  - ✓ Implementation of a local 3D model (using OpenFOAM) of the pile simulated in the physical model
     Jet plongeant





Physical model configuration



**RISK** 

Summer

School

Raised footing configuration

Bed shear stress increased from 150 N/m<sup>2</sup> to 180 N/m<sup>2</sup> (extrapolated at field scale)

Scour analysis (2021)

 $\checkmark~$  Bed shear stress increased from 150 N/m² to 180 N/m²

✓ Stability criteria :  $\theta = \frac{\tau_b}{(\rho_s - \rho_f)gd} > \theta_c$ 

 $\Rightarrow$  For a given value of bed shear stress we deduce

the largest particle size that can be transported

- ✓ The riprap used for scour protection is  $d_{50}$ =0.2 m
  - $\Rightarrow$  For  $\tau_b$  = 150 N/m<sup>2</sup>  $\theta$  = 0.046

 $\Rightarrow$  For  $au_b$  = 180 N/m<sup>2</sup> heta = 0.055

In both scenario the stability is uncertain ( $\theta$  close to  $\theta_c$ )

These simulations suggest that the expert hypothesis is correct: the increase in footing height generate larger scour







Scour analysis (2021)

✓ Coupling of a 3D model of the Dordogne section (using TELEMAC 3D) with a local

OpenFOAM model representative of pile P12



RISK

Summer

School

2024

-1820 3820

3790



Scour analysis (2021)



 ✓ Formation of a strong horseshoe vortex upstream the footing is responsible for the intense scour



**RISK** 

Summer

School

- Scour analysis (2021)
  - ✓ Solution:
    - riprap refilling with larger particles to increase the intrinsic stability
    - $d_{50}=0.4 \text{ m} \Rightarrow \theta = 0.023 < \theta_c$
- Conclusion & perspectives
  - This study illustrates how 3D numerical simulations may be used to analyze scour and propose remediation solutions
  - ✓ Main limitation: no sediment transport or morphodynamic evolution in simulations
    - Developing such a model is one of the goal of the OXALIA chair



## A new generation of numerical model

#### Thèse M. Renaud (2022-2025)

- ✓ Development of an open-source operational morphodynamic model
- ✓ Scouring: preventing the risk of hydraulic structure failure







RISK



# **Conclusion & perspectives**

- Scour is one of the main risk for hydraulic structures collapse
  - $\checkmark$  ~ 50% for bridge piers in the USA
- > Coherent structures/vortices responsible for the digging of the river bed
- Scour protection such as riprap are estimated using empirical formulas
- > Hydrodynamic parameters are obtained from physical or numerical models
- ➢ Goal of OXALIA chair: develop a new generation of model capable of simulating the flow and the bed evolution around hydraulic structures for practical applications



# Upscaling



# Logos / Éléments graphiques individuels

FRANCE

RISK Summer School 2024



**GRENOBLE** 

#### Graduate School@UGA RISK Thematic program