RISK Summer School 2024

VULNERABILITY OF DIKES OR GRAVITY DAMS Better estimate the strength of rockfills

Christophe DANO, 3SR Laboratory

I-RISK

OUTLINE

- Rockfill ?
- Brief history of dikes and rockfill dams
- Geotechnical investigation
 - Mechanical part
 - Hydraulic part
- Erosion

Rockfill ?

- Collection of rock particles : purely frictional, non cohesive
- From some mm to meter in civil engineering applications
- Usually placed in dense conditions

river dikes

coastal dikes

railway

dam

RISK

Summer

School

2024

PERIOD 1 – From ancient times (> 2000 years) to Middle Age

Agriculture, flooding mitigation, water ressource

Small and massive dams (< 25m)

Figure 1 : Barrage de SADD-EL-KAFARA (-2650 av JC) d'après SCHNITTER

Engineering point of view : double need of STABILITY / WATERTIGTHNESS

PERIOD 2 – Industrial revolution (19th – beginning of 20th century)

Technical improvements : concrete, arch technology (thinner dams)

RISK

Summer

School

« Zola » dam (France) $_4$

PERIOD 3 – Post 2nd world (1950 – 1970)

Higher and higher structures (> 250m)

Objectives : energy production, irrigation

2 main catastrophic events on concrete arch dams

Location : Europe / North America (USA, Mexico)

Malpasset (France), 1959,

Quality of the abutment

Landslide in the reservoir

PERIOD 4 - > 2000

Main areas of interest : South America, Africa & Asia

Main technology:

CFRD (Concrete Face Rockfill Dam)

Heigths : > 200m

Genesis of SUSTAINABLE DEVELOPMENT : main consequence = RE-USE of LOCAL MATERIAL

RISK

Summer

School

2024

PERIOD 4 -> 2000

PATHOLOGIES

CASE STUDY 1 / CAMPOS NOVOS DAM (BRAZIL - 2005)

Hydro-power, H 202m

FAILURE of the concrete face during 1st filling

RISK Summer School 2024

PERIOD 4 -> 2000

PATHOLOGIES

CASE STUDY 2 / MOHALE DAM (LESOTHO - 2006)

H 145m,

FAILURE of the concrete face during 1st filling

+ HEAVY RAINS

RISK Summer School 2024

Leakage of 600 l/s

PERIOD 4 - > 2000

PATHOLOGIES

CFRD	ISSUE	CAUSE
Aguamilpa h=187m	Concrete facing cracking	Rockfill deformability
Barra Grande h=185m	Concrete facing cracking	Joint failures
Campos Novos h=202m	Concrete facing cracking	Rockfill defformability
ltá h=125m	Slabs cracking	Rockfill deformability
ltapebi h=120m	Cracks parallel to the plinth	Foundation geometry
Mohale h=145m	Compression joint rupture	Rockfill deformability
Tianshengqiao 1 h=178m	Horizontal cracking	Construction sequence
Xingó h=150m	Slabs cracking	Sharp geometry of the left abutment and material deformability

 \triangleright

PERIOD 4 -> 2000

ACCIDENTOLOGY

SIMILARITIES

- PERIOD : 2000 < < 2010
- CFRD involving ROCKFILL
- FAILURE during 1st FILLING
- FAILURE of the CONCRETE face
 - Use of LOCAL resources

COMMON FEATURES

- No technical capacity to evaluate rockfill quality
 - High mechanical stresses
 - Lack of geotechnical knowledge
 - Influence of water

MECHANICAL / HYDRO ISSUE

RISK

Summer

School

2024

MECH ISSUE 1: ANY SIZE EFFECT AT THE « GRAIN » SCALE ?

Protodyakonov tests Franklin tests

•••

 $\sigma_f \propto \frac{F_f}{d^2}$

YES THERE IS A SCALE EFFECT AT THE GRAIN SCALE

(Weibull 's distribution)

Marsal et al. (1965) El Infiernillo - Diorite
× Marsal et al. (1965) Pinzadaran: Gravelly alluvial
* Marsal (1967) Mica grad. Y - Granitic gneiss
+ Marsal (1967) San Francisco grad. 2- Basalt
Trois Vallées ECHO - Shale Rockfill Entre Plaques
Trois Vallées ECHO - Shale Rockfill Franklin
A Calcaire de Préfontaines - Entre Plaques ECN

11

RISK

Summer

School

2024

MECH ISSUE 2 : IT THE SAME AT THE SAMPLE SCALE ?

SAMPLE SIZE : at least 6 to 10 times the maximum grain size

Extrapolation to rockfill in the field

MECH ISSUE 3 : IT THE SAME AT THE SAMPLE SCALE ?

RISK Summer School 2024

CONCLUSION: 3

YES

- Decrease of the shear strength with increasing particle size
 - Increase of grain breakage
- More compressible volumetric behaviour (more prone to settlement)

HYDR

SETTLEMENT EMPHASIZED BY RAINFALLS

rate

RISK Summer School 2024

1D compression tests

Clear instanteneous effect of imbibition

RISK Summer School 2024

1D compression tests

Long-term effect in both dry or saturated rockfills

RISK Summer School 2024

1D compression tests

Long-term effect in both dry or saturated rockfills

CAMPOS NOVOS CFRD

- 1st filling of the reservoir

Contact between water and rock blocks

U Breakage of blocks at the base

↓ Settlement of the rockfill + bending of the concrete face (traction)

↓ Failure of the concrete face + leakage

RISK Summer School 2024

Erosion

RISK Summer School 2024

External erosion (backward)

Detachment of particles downstream

↓ Loss of stability

Internal erosion

Flow of small particles inside the structure

Change of mechanical and hydraulic properties that could lead to failure

Conclusions

RISK Summer School 2024

- Rockfill behaviour not completely known
- Use of local rock ressources : not mechanically optimized
- Material senstive to stresses and water (imbibition or flow)
- Time-dependency of the behaviour : requirement of an adequate monitoring of the structures

THANK YOU FOR YOUR ATTENTION

RISK Summer School 2024

Graduate School@UGA RISK Thematic program