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Digital Twins for environmental applications
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Scenario of a flood in the Frayol watershed,
Le Teil city, Ardéche, France

with Virtual Reality - P. Bellemain, Gipsa-lab 2024
DITRISC project
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Digital Twin for environmental applications |
P. Bellemain, GIPSA-lab, 2025
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Digital Twin for environmental applications b Bellomain, GIPSAab, 2025
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v Understanding cascading or coupled dynamics
v Managing different spatial and temporal scales
v" Including human behavior
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Cyclone simulation Gentro Naciona de Supsrcomputacidn Earthquake simulation Landslide simulation



https://theconversation.com/modeliser-le-climat-grace-au-calcul-scientifique-70461
https://aecmag.com/news/digital-twins-for-a-sustainable-built-environment/

Model classification: Knowledge vs data-based models

Von Neumann paradigm Al - Machine Learning

Physical modelling Data-based modelling

Compliance with the laws of PhYSiCS v Easier access to modeling

Interpretability v' Continuous learning and improvement
Parametrization v Low simulation cost once learned

Theoretical investment v Weak interpretability

Calibration may be complex v' Compliance with the laws of Physics not
Complex phenomena that are sometimes guaranteed

difficult to take into account v’ High sensitivity to data quality
Simulation cost for large-scale models
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Modelling of natural hazards - some examples

Floods, tsunami, landslides, avalanches dynamics
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h = absolute height, u, v = velocity in x, y directions




Modelling of natural hazards - some examples

Advection-Diffusion-Reaction -|Wildfire dynamics
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It = —35r(T), Arrhenius law of combustion

e
(1) =@ T > T, (T)=0.T<T,

T'(x,y,t) = distributed temperature in the ground layer, T, =
ambient temperature, S(x, y, t) = distributed mass fraction of fuel,
(vi. vy ) = air velocity, k = diffusion coefficient

Google images



Modelling of natural hazards - some examples

Elastic Wave equations -|Seismic dynamics

%) = N.oltod+1(x)
= AV.u(t,x) + p[Vu(t,x) + Vu(t,x)7]

/)8?2 U(t
(t
where u(t,x) = displacement vector field and o(t, x) = stress

tensor; p(x) = density of the elastic medium, and A\(x) and p(x)
are Lamé elastic constants; f(x) = seismic source distribution

Séisme du Teil - 11 novembre 2019 BRGM



Modelling of crowd dynamics in evacuation situations - Hughes’ model

PhD thesis - COCHAIR

[Density of individuals]as a function of time t and space coordinates x - PEPR IRiMa
8ip =V -(pf(p)*V¢) =0 inQr, Qr = (0,T) x Q
1 Pedestrians seek to minimize their (accurately) estimated travel time, but modify

Vo| = m in Q7. mmp their velocity to avoid high densities. The potential is thus a solution of the Eikonal

equation

v= f(p)u, |u| =1, wheref(p)isanon-increasing function that attains the value oneat p = 0, is

positive for ) < p < 1and zeroat p = 1.
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General framework for spatio-temporal modelling: PDEs

-
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u(x, t) is a physical quantity, function of space z et time ¢.

@ is a vector of parameters

J

L and B are the differential and boundary/initial condition operators, respectively.

L is a function of partial derivatives

g 0 gk




DT: Increasing synergy between models and data

For better reality representation and forecasting capabilities

Findings Scientific challenges

Complex multi-scale spatio-temporal
Phenomena

— |mpr0ving the relevance Of mode's

for more realistic scenario building

Unstationarity & uncertainty

Quickly extract relevant information from data:
Detect, predict to alert, anticipate

Massive and heterogeneous data,

weak signals



Synergy between models and data

Direct modeling

Google images

Synthetic Data
Parameters

Knowledge /Representation
Models

On-Field Data

o *°

Inverse modelling , Data Assimilation, Inverse Problems

- GPS
- Camera

- Accelerometers
- Microphone

Google imas



What is data assimilation?

Estimate states and/or parameters of a physical system using sensor measurements
and a model of the system dynamics

Sensor measurements An optimization problem

Minimize K

K
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k=0

, k=1
Xt = Mig—1(Xp—1, A |
State at k Mkk 1( k—1: )+77k Dynamical model
time K

Yi = %k (Xk) + €L Regularization term

v" Accurate method (with adjoint system)
v' Significant computation time

Carrassi et al, 2018, data assimilation in geosciences
https://arxiv.org/abs/1709.02798
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What is data for DT and natural hazard monitoring?

Android’s earthquake alert system

v Geophysical sensors deployment using
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D. Georges, IDRIM Journal, 2020 Google

Sensors : GPS, camera, accelerometer, temperature https://doi.org/10.5595/001c.17963
https://twitter.com

https://doi.org/10.3390/s21082609
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A challenge: The optimal deployment of sensors

Maximizing an observability indicator: e.g.,

Optimal sensor location sensitivity of measurements to
parameters/states to be estimated
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Optimal navigation of drones for pollution detection

M. Comboul et al, ]. of Climate, 2015
D. Georges, IDRIM Journal, 2020



Deep Learning: What is an artificial neural network (ANN)?
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Deep Learning: What is supervised learning of a ANN?

Finding a relationship between a set of data X and a set of data y,

by solving a nonlinear regression problem: Minimization of a loss function

Update of the parameters of the neural network,
by using a stochastic gradient approach:

Qk—l—l — Qk

Back propagation computation
(Le Cun et al., 1989)



An example in natural hazard monitoring :

Data-based wildfire ignition location
Direct learning of the inverse function based on snapshots of sensor outputs

L. Barbance, S. Benkaddour, S. Drissi, D. Georges, 2019

y:temperature measurements

: . Convolutional
p= F(y) Neural Network

Distribution of location errors

p = fire start location Google images
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From data-based machine learning to physics-informed machine
learning

* Bringing together the “best of the two worlds” of modelling:

* The data is used to “enrich” the solution derived from a deep
neural network

* But the solution complies with the laws of physics



What is a Physics-Informed Neural Network (PINN)?

(Raissi etal. 201 9) The physical model is now included in the loss function

PDE: L(u(x,t),0) = g

https://www.linkedin.com /pulse /physics-informed-neural-network-pinn-une-r%C3%A9volution-la-mitchozounou-0Oeaje



https://www.linkedin.com/pulse/physics-informed-neural-network-pinn-une-r%C3%A9volution-la-mitchozounou-0eaje/

Mathematical formulation of PINNs

If alone, a pure data-

y(xy, t;) is an observable (solution of the PDE obtained from real data and/or simulations).

U is the approximation produced by the neural network.

—[estimatinn of the parameters # and u(z, t) without knowing the initial state u(x, 0)) can be solved by
considering




A direct link with the classical data assimilation approach
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A case study - DT for flood monitoring based on a 1D runoff model

A simplification of shallow water equations: i 2 e e A
The kinematic wave equation 7 N X”‘/
: 5 2 \%de £ Common Units
A : s velocity width (in, ftm)

A A SO depth (in, ft, m)
locity (ft/s or m/
Guadalupe flash flood - Texas, July 2025 - abc news velocty (s orm’s)

Physical model

Google images

afQ(z, t]ﬂd%{m, t) + %(m,t} =0,z € [0,L],t € (0,T),

Q(z = 0,t) = Qo(z) (IC)

Q(z,t) is the water flow rate, as a function of space coordinate z and time ¢. y?{t) =Q(z = z!,t)
nb?/? ’

A=06anda= a; is the location of the sensor i
v/ S

n is a roughness coefficient, b is the width of the channel, Sj is th slope of the channel,

f(t) is the upstream flow rate defining the boundary condition, and Q(z) is the initial flow rate distribution.



DT: Flood monitoring using a PINN {

—

Real-time
data

Data
assimilation /
forecasting
based a flow
model

collection

Google images K
From only 2 sensors at the extremities,
can we estimate the flow rate Q(x,t) for all x and t?

Q(x,t) ?

Receding horizon approach

f(t) o—
X= 0 *

2 sensors



PINN formulatlon for ﬂood ‘monitoring

Y
PDE residual

| ] \ J

Y |

Data sensor fitting term BC residual

NN: 1 hidden layer with 100 neurons


https://www.linkedin.com/pulse/physics-informed-neural-network-pinn-une-r%C3%A9volution-la-mitchozounou-0eaje/

Evolution of Q_mc(t, x_i) as a function of time

Results
Channel of 7200m with width of 60m,
Gaussian distribution of the inflow hydrograph 2

* The « real » data is obtained from a simulation

based on the method of characteristics

ethod of characteristics - Q_mc(x, PINN - Q_pmn{x,t]
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Conclusions

* Machine learning is set to play an important role in the development of
digital twins:

The synergy between models and data is facilitated by PINNSs:

Multi resolution, no need for adjoint system calculation, meshless approach, complexity
independent of dimensions...

* Many challenges remain, amongst them:

Efficient learning of parametrized solutions for complex physical models:
high-dimensional simulation/estimation problem for a variety of data and parameters,
very heterogeneous domains (many internal BCs),

improvement through optimal sensor location ...
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