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Scenario of a flood in the Frayol watershed,
Le Teil city, Ardèche, France
with Virtual Reality  - P. Bellemain, Gipsa-lab 2024
DITRISC project

MODELS

https://www.gim-international.com/content/article/can-digital-twin-techniques-serve-city-needs

https://www.gim-international.com/content/article/can-digital-twin-techniques-serve-city-needs


Digital Twin for environmental applications

Simulation of a wildfire near Le Teil City in Virtual Reality DITRISC Project funded by MITI-CNRS

P. Bellemain, GIPSA-lab, 2025



Digital Twin for environmental applications

Simulation of Monteynard dam breakDITRISC Project funded by MITI-CNRS

Monteynard dam

P. Bellemain, GIPSA-lab, 2025



Scientific challenges of modelling and simulation for DT

✓ Understanding cascading or coupled dynamics 
✓ Managing different spatial and temporal scales
✓ Including human behavior

Microscale
Landslide simulation

Mesoscale
Earthquake simulation

Macroscale
Cyclone simulation

https://theconversation.com/modeliser-le-climat-grace-au-calcul-scientifique-70461

https://aecmag.com/news/digital-twins-for-a-sustainable-built-environment/

Crowd evacuation simulation

https://theconversation.com/modeliser-le-climat-grace-au-calcul-scientifique-70461
https://aecmag.com/news/digital-twins-for-a-sustainable-built-environment/


Model classification: Knowledge vs data-based models
Von Neumann paradigm AI – Machine Learning

Physical modelling

✓ Compliance with the laws of Physics
✓ Interpretability
✓ Parametrization

✓ Theoretical investment
✓ Calibration may be complex
✓ Complex phenomena that are sometimes 

difficult to take into account
✓ Simulation cost for large-scale models

✓ Easier access to modeling
✓ Continuous learning and improvement
✓ Low simulation cost once learned

✓ Weak interpretability
✓ Compliance with the laws of Physics not 

guaranteed
✓ High sensitivity to data quality

Data-based modelling

Shallow Water Equations on a sphere

Auto-regressive surrogate model 



Modelling of natural hazards – some examples

Shallow water equations
(A. Barré de Saint Venant, 1871)

Google images



Modelling of natural hazards – some examples

Arrhenius law of combustion

Google images



Modelling of natural hazards – some examples

BRGM



Modelling of crowd dynamics in evacuation situations – Hughes’ model

Density of individuals as a function of time t and space coordinates x

Multi-agent approach

Macroscopic approach

PhD thesis – COCHAIR
- PEPR IRiMa

https://doi.org/10.1007/978-3-030-50450-2_8

https://doi.org/10.1007/978-3-030-50450-2_8


General framework for spatio-temporal modelling: PDEs



DT: Increasing synergy between models and data

Findings Scientific challenges

Complex multi-scale spatio-temporal

Phenomena

Unstationarity & uncertainty

Massive and heterogeneous data,

weak signals 

Improving the relevance of models 

for more realistic scenario building

Quickly extract relevant information from data:

Detect, predict to alert, anticipate

For better reality representation and forecasting capabilities



Synergy between models and data

Parameters
Knowledge/Representation

Models

Synthetic Data

On-Field Data

Direct modeling

Inverse modelling , Data Assimilation, Inverse Problems

Sensors

Google images

Google images



What is data assimilation?

Estimate states and/or parameters of a physical system using sensor measurements
and a model of the system dynamics

https://arxiv.org/abs/1709.02798

Carrassi et al, 2018, data assimilation in geosciences

Sensor model

Dynamical model

✓ Significant computation time 

Sensor measurements

State at 
time K

✓ Accurate method (with adjoint system)

Minimize

An optimization problem

Regularization term

https://arxiv.org/abs/1709.02798


What is data for DT and natural hazard monitoring? 

✓ Geophysical sensors deployment using
Wireless Sensor Networks by satellites 
✓ New sources of Data: Citizen data

Crowdsensing

D. Georges, IDRiM Journal, 2020
https://doi.org/10.5595/001c.17963

Android’s earthquake alert system

https://www.youtube.com/watch?v=1_9PeG6Icpg

https://twitter.com

https://www.latimes.com/

https://doi.org/10.3390/s21082609

Internet of Things (IoT)

MountAIn start-up

https://doi.org/10.5595/001c.17963
https://www.youtube.com/watch?v=1_9PeG6Icpg
https://twitter.com/
https://www.latimes.com/
https://doi.org/10.3390/s21082609


A challenge: The optimal deployment of sensors

Optimal sensor location

Optimal network of coral proxies for paleoclimate monitoring

M. Comboul et al, J. of Climate, 2015 Optimal navigation of drones for pollution detection
D. Georges, IDRiM Journal, 2020

Maximizing an observability indicator: e.g., 
sensitivity of measurements to 

parameters/states to be estimated



Deep Learning: What is an artificial neural network (ANN)?

An artificial neuron = a 
mathematical approximation 

of a biological neuron



Deep Learning: What is supervised learning of  a ANN?

Finding a relationship between a set of data X and a set of data Y, 

by solving a nonlinear regression problem:

Update of the parameters of the neural network, 
by using a stochastic gradient approach:

Minimization of a loss function

Back propagation computation
(Le Cun et al., 1989)



An example in natural hazard monitoring : 
Data-based wildfire ignition location

Direct learning of the inverse function based on snapshots of sensor outputs

85 % of location errors < 10 m
With 30 sensors scattered on a cell [500m, 500m]

L. Barbance, S. Benkaddour, S. Drissi, D. Georges, 2019

Convolutional
Neural Network

y=temperature measurements
p = fire start location

Inverse  function

Learning with synthetic data obtained
from model simulations

Distribution of location errors

Google images



From data-based machine learning to physics-informed machine 
learning

•Bringing together the “best of the two worlds” of modelling:

•The data is used to “enrich” the solution derived from a deep 
neural network

•But the solution complies with the laws of physics



What is a Physics-Informed Neural Network (PINN)?

(Raissi et al., 2019) The physical model is now included in the loss function

https://www.linkedin.com/pulse/physics-informed-neural-network-pinn-une-r%C3%A9volution-la-mitchozounou-0eaje/

https://www.linkedin.com/pulse/physics-informed-neural-network-pinn-une-r%C3%A9volution-la-mitchozounou-0eaje/


Mathematical formulation of PINNs

If alone, a pure data-based NN learning



A direct link with the classical data assimilation approach

Sensor model

Dynamical model

Similar to the first term of MSE_{u,BC} 

State at 
time K

Minimize

Similar to MSE_R



A case study – DT for flood monitoring based on a 1D runoff model

A simplification of shallow water equations: 

The kinematic wave equation

Data : Flow rate

Physical model Guadalupe flash flood – Texas, July 2025 – abc news
Google images



Digital
Twin

Meteo data
DT: Flood monitoring using a PINN

From only 2 sensors at the extremities, 
can we estimate the flow rate Q(x,t) for all x and t?

f(t)

2 sensors

Q(x,t) ?

x=0

x=L

Real-time 
data 

collection

Data 
assimilation / 

forecasting
based a flow 

model

Alerting

Google images

Receding horizon approach



PINN formulation for flood monitoring

Data sensor fitting term BC residual

PDE residual

NN: 1 hidden layer with 100 neurons

https://www.linkedin.com/pulse/physics-informed-neural-network-pinn-une-r%C3%A9volution-la-mitchozounou-0eaje/

https://www.linkedin.com/pulse/physics-informed-neural-network-pinn-une-r%C3%A9volution-la-mitchozounou-0eaje/


Results
Channel of 7200m with width of 60m, 
Gaussian distribution of the inflow hydrograph

• The « real » data is obtained from a simulation 

based on the method of characteristics

Inflow hydrograph
upstream– sensor 1

Good estimation of the unknown initial state! Downstream flow - sensor 2



Conclusions

• Machine learning is set to play an important role in the development of 
digital twins: 

The synergy between models and data is facilitated by PINNs:
Multi resolution, no need for adjoint system calculation, meshless approach, complexity 
independent of dimensions…

• Many challenges remain, amongst them:

Efficient learning  of parametrized solutions for complex physical models: 

high-dimensional simulation/estimation problem for a variety of data and parameters, 

very heterogeneous domains (many internal BCs),

improvement through optimal sensor location …



Thank you for your attention!

Source iFunny – Google images


