

Physics-Informed Machine Learning for Monitoring Natural Hazards in Digital Twins

Didier Georges

Diagnosis and Control Department - Infinity Team

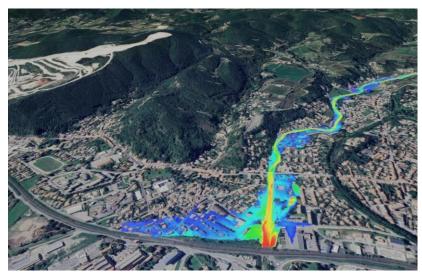
Outline

- ✓ What is a **Digital Twin**? The DITRISC project
- ✓ Scientific challenges in modelling and simulation, model classification
- ✓ Some examples of natural hazards, PDE framework
- ✓ Synergy between models and data: data assimilation
- **✓ Data for natural hazard** monitoring
- ✓ A short introduction to **Deep Learning**, from data-based learning to Physics-Informed learning
- **✓ PINN approach**
- ✓ A case study: A DT for flood monitoring
- **✓** Conclusions

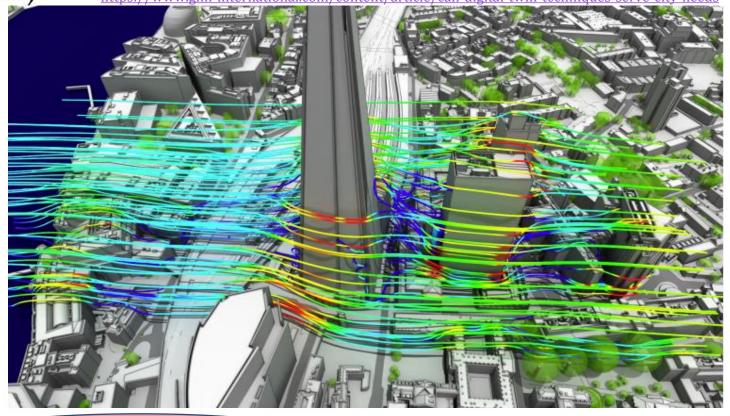
Digital Twins for environmental applications

"A digital twin is a virtual representation synchronized with physical things (data) people or processes" (Digital

shadows) https://www.gim-international.com/content/article/can-digital-twin-techniques-serve-city-needs



Scenario of a flood in the Frayol watershed, Le Teil city, Ardèche, France with Virtual Reality - P. Bellemain, Gipsa-lab 2024 DITRISC project



For monitoring and diagnosis (early detection), prediction : scenarios elaboration, decision-making support

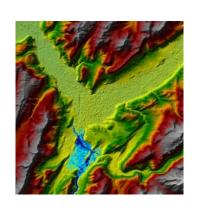
Digital Twin for environmental applications

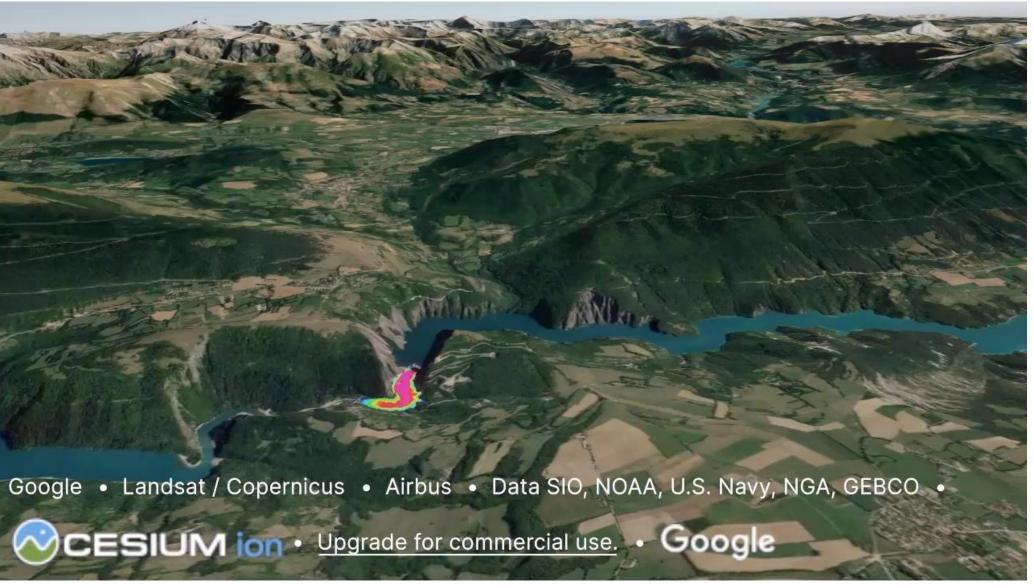
P. Bellemain, GIPSA-lab, 2025

Digital Twin for environmental applications

P. Bellemain, GIPSA-lab, 2025

Monteynard dam

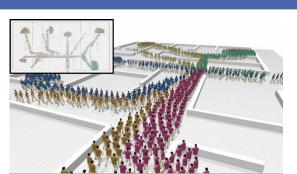




Simulation of Monteynard dam break

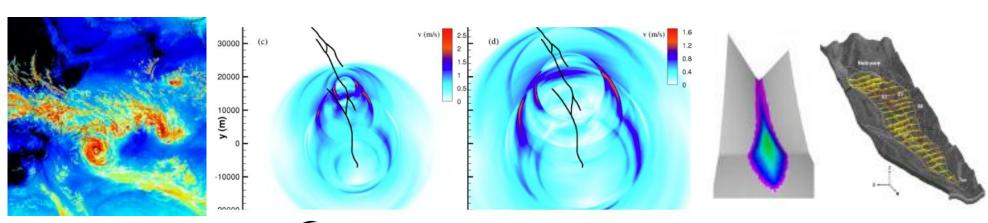
Scientific challenges of modelling and simulation for DT

- ✓ Understanding cascading or coupled dynamics
- ✓ Managing different spatial and temporal scales
- ✓ Including human behavior



https://aecmag.com/news/digital-twins-for-a-sustainable-built-environment

Crowd evacuation simulation



MacroscaleCyclone simulation

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Mesoscale Earthquake simulation

Microscale Landslide simulation

Model classification: Knowledge vs data-based models

Von Neumann paradigm

AI – Machine Learning

Physical modelling

- ✓ Compliance with the laws of Physics
- ✓ Interpretability
- ✓ Parametrization

- ✓ Theoretical investment
- ✓ Calibration may be complex
- ✓ Complex phenomena that are sometimes difficult to take into account
- ✓ Simulation cost for large-scale models

Data-based modelling

- ✓ Easier access to modeling
- ✓ Continuous learning and improvement
- ✓ Low simulation cost once learned

- ✓ Weak interpretability
- ✓ Compliance with the laws of Physics not guaranteed
- ✓ High sensitivity to data quality

Shallow Water Equations on a sphere

$$\frac{\partial \mathbf{u}_c}{\partial t} = -P \begin{bmatrix} (\mathbf{u}_c \cdot P \nabla_c) u_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{i}} + g(P \hat{\mathbf{i}} \cdot \nabla_c) h \\ (\mathbf{u}_c \cdot P \nabla_c) v_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{j}} + g(P \hat{\mathbf{j}} \cdot \nabla_c) h \\ (\mathbf{u}_c \cdot P \nabla_c) w_c + f(\mathbf{x} \times \mathbf{u}_c) \cdot \hat{\mathbf{k}} + g(P \hat{\mathbf{k}} \cdot \nabla_c) h \end{bmatrix} \qquad \frac{\partial h^*}{\partial t} = -(B \hat{\mathbf{j}} \cdot \nabla_c) \hat{\mathbf{j}} \cdot \nabla_c \hat{\mathbf{j}} \hat{\mathbf{j}} + g(B \hat{\mathbf{j}} \cdot \nabla_c) \hat{\mathbf{j}} \hat{\mathbf$$

$$y(t) = \Phi_{RN}(y(t-1), y(t, -2), \dots, y(t-n), u(t-1, u(t-2), \dots, u(t-m)))$$

Auto-regressive surrogate model

Modelling of natural hazards – some examples

Floods, tsunami, landslides, avalanches dynamics

$$\frac{\partial h}{\partial t} + \frac{\partial}{\partial x}(Hu) + \frac{\partial}{\partial y}(Hv) = 0, \ H = h - b$$

Shallow water equations (A. Barré de Saint Venant, 1871)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + g \frac{\partial h}{\partial x} = -\tau_x$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + g \frac{\partial h}{\partial x} = -\tau_y$$

h = absolute height, u, v = velocity in x, y directions

Google images

Modelling of natural hazards – some examples

Advection-Diffusion-Reaction - Wildfire dynamics

$$\frac{\partial T}{\partial t} + v_{x} \frac{\partial T}{\partial x} + v_{y} \frac{\partial T}{\partial y} = k(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}}) + Sr(T) + \lambda(T - T_{a}),$$

$$\frac{\partial S}{\partial t} = -\beta Sr(T), \quad \text{Arrhenius law of combustion}$$

$$r(T) = e^{-\alpha/(T - T_{a})}, T > T_{a}, r(T) = 0, T \leq T_{a}$$

T(x, y, t) = distributed temperature in the ground layer, T_a = ambient temperature, S(x, y, t) = distributed mass fraction of fuel, (v_x, v_y) = air velocity, k = diffusion coefficient

Google images

Modelling of natural hazards – some examples

Elastic Wave equations - Seismic dynamics

$$\rho \partial_{t^2}^2 u(t, x) = \nabla . \sigma(t, x) + f(x)$$

$$\sigma(t, x) = \lambda \nabla . u(t, x) I + \mu [\nabla u(t, x) + \nabla u(t, x)^T]$$

where u(t,x) = displacement vector field and $\sigma(t,x) =$ stress tensor; $\rho(x) =$ density of the elastic medium, and $\lambda(x)$ and $\mu(x)$ are Lamé elastic constants; f(x) = seismic source distribution



BRGM

Modelling of **crowd dynamics** in evacuation situations – Hughes' model

PhD thesis - COCHAIR - PEPR IRiMa

Density of individuals as a function of time t and space coordinates x $\partial_t \rho - \nabla \cdot (\rho f(\rho)^2 \nabla \phi) = 0 \quad \text{in } Q_T, \qquad Q_T := (0,T) \times \Omega$

$$\partial_t
ho -
abla \cdot (
ho \, f(
ho)^2 \,
abla \phi) = 0 \quad ext{in } Q_T,$$

$$Q_T:=(0,T) imes \Omega$$

$$|
abla \phi| = rac{1}{f(
ho)} \quad ext{in } Q_T.$$

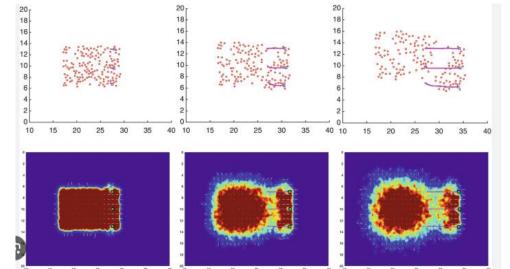
Pedestrians seek to minimize their (accurately) estimated travel time, but modify $|
abla \phi| = rac{1}{f(
ho)}$ in Q_T . \Longrightarrow their velocity to avoid high densities. The potential is thus a solution of the Eikonal

equation

$$v=f(
ho)\,u,\quad |u|=1,\quad$$
 where $f(
ho)$ is a non-increasing function that attains the value one at $ho=0$, is

positive for $0 < \rho < 1$ and zero at $\rho = 1$.

$$u=-rac{
abla \phi}{|
abla \phi|}.$$



Multi-agent approach

Macroscopic approach

https://doi.org/10.1007/978-3-030-50450-2 8

General framework for spatio-temporal modelling: **PDEs**

$$\mathcal{L}(u(x,t),\theta)=g$$

$$\mathcal{L}(u(x,t), heta)=g$$
 $\mathcal{B}(u(x,t), heta))=f$

u(x,t) is a physical quantity, function of space x et time t.

 θ is a vector of parameters

 \mathcal{L} and \mathcal{B} are the differential and boundary/initial condition operators, respectively.

 \mathcal{L} is a function of partial derivatives $\frac{\partial}{\partial t}$, $\frac{\partial}{\partial x}$, ..., $\frac{\partial^{\kappa}}{\partial x^k}$.

DT: Increasing synergy between models and data

For better reality representation and forecasting capabilities

Findings

Complex multi-scale spatio-temporal Phenomena

Unstationarity & uncertainty

Massive and heterogeneous data, weak signals

Scientific challenges

Improving the relevance of models for more realistic scenario building

Quickly extract relevant information from data: Detect, predict to alert, anticipate

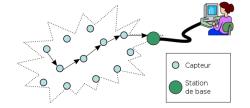
Synergy between models and data

$$\mathbf{x}_k = \mathcal{M}_{k:k-1}(\mathbf{x}_{k-1}, oldsymbol{\lambda}) + oldsymbol{\eta}_k \ \mathbf{y}_k = \mathcal{H}_k(\mathbf{x}_k) + oldsymbol{\epsilon}_k$$

Parameters Knowledge/Representation Models

Synthetic Data

On-Field Data



Google images

Google images

What is **data assimilation**?

 $\mathbf{y}_k = \mathcal{H}_k(\mathbf{x}_k) + \boldsymbol{\epsilon}_k$

Estimate states and/or parameters of a physical system using sensor measurements and a model of the system dynamics

Sensor measurements

An optimization problem

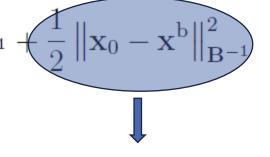
State at time K

$$\mathcal{J}(\mathbf{x}_{K:0}) = \frac{1}{2} \sum_{k=0}^{K} \|\mathbf{y}_k - \mathcal{H}_k(\mathbf{x}_k)\|_{\mathbf{R}_k^{-1}}^2 + \frac{1}{2} \sum_{k=1}^{K} \|\mathbf{x}_k - \mathcal{M}_{k:k-1}(\mathbf{x}_{k-1})\|_{\mathbf{Q}_k^{-1}}^2 + \frac{1}{2} \|\mathbf{x}_0 - \mathbf{x}^b\|_{\mathbf{B}_k^{-1}}^2$$

$$\frac{1}{2} \sum_{k=1}^{1} \|\mathbf{x}_{k} - \mathcal{M}_{k:k-1}(\mathbf{x}_{k-1})\|_{\mathbf{Q}_{k}}^{2}$$

$$\mathbf{x}_k = \mathcal{M}_{k:k-1}(\mathbf{x}_{k-1}, oldsymbol{\lambda}) + oldsymbol{\eta}_k$$
 Dynamical model

Sensor model



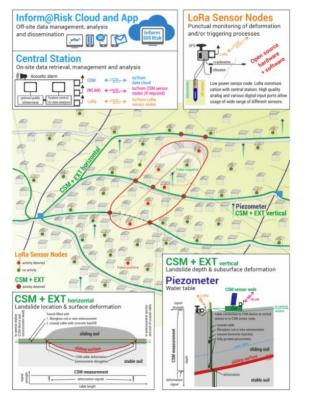
Regularization term

- ✓ Accurate method (with adjoint system)
 - ✓ Significant computation time

What is data for DT and natural hazard monitoring?

 Sensor stations CANADA

https://www.latimes.com/



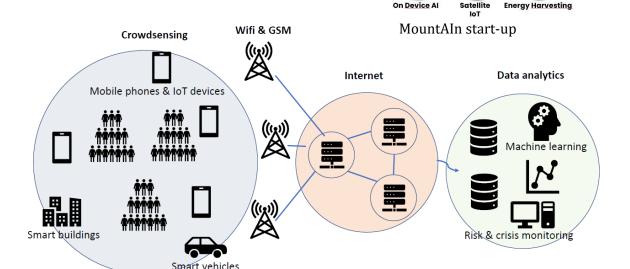
✓ Geophysical sensors deployment using Wireless Sensor Networks by satellites

✓ New sources of Data: Citizen data

Crowdsensing

Internet of Things (IoT)

Sensors: GPS, camera, accelerometer, temperature



D. Georges, IDRiM Journal, 2020

https://doi.org/10.5595/001c.17963

Android's earthquake alert system

https://www.youtube.com/watch?v=1_9PeG6Icpg

Avoid damaged buildings

Check for cracks and damage. Evacuate if it looks like the building may collapse.

63.5 miles away July 24, 2021 4:49 AM Source: Android Earthquake Alerts System

https://twitter.com

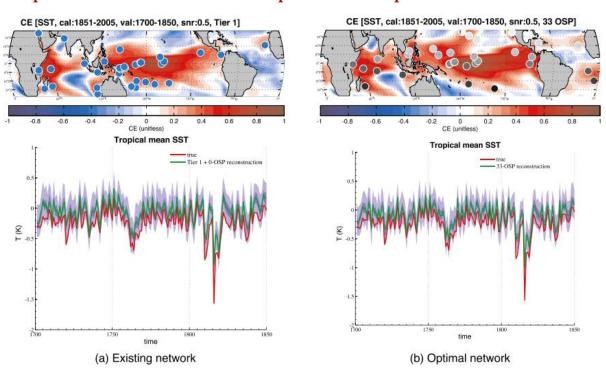
https://doi.org/10.3390/s21082609

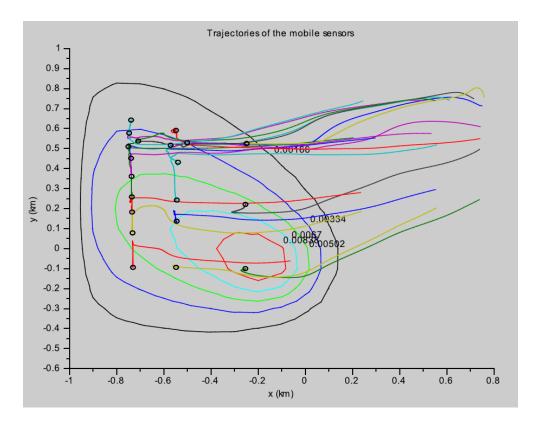
A challenge: The optimal deployment of sensors

Optimal sensor location

Maximizing an observability indicator: e.g., sensitivity of measurements to parameters/states to be estimated

Optimal network of coral proxies for paleoclimate monitoring



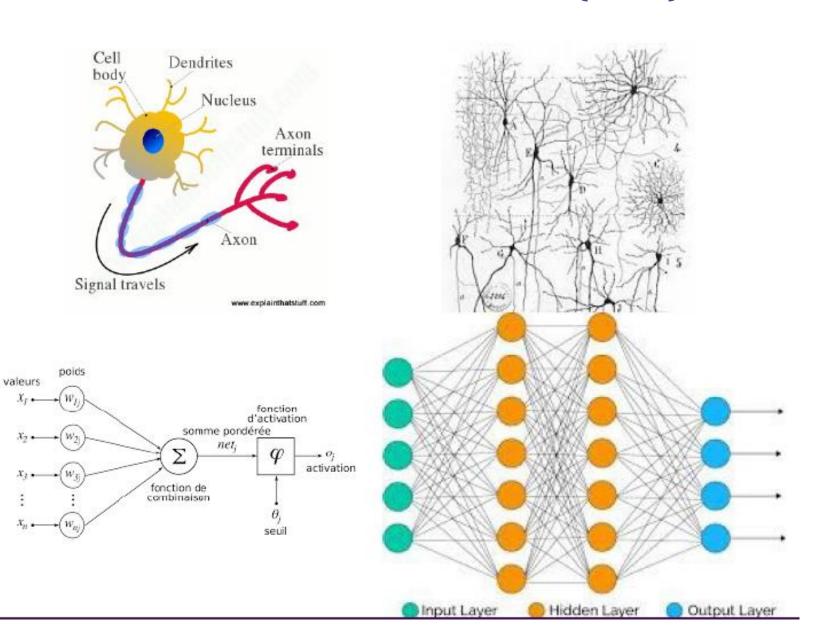


M. Comboul et al, J. of Climate, 2015

Optimal navigation of drones for pollution detection *D. Georges, IDRiM Journal, 2020*

Deep Learning: What is an artificial neural network (ANN)?

An artificial neuron = a mathematical approximation of a biological neuron



Deep Learning: What is **supervised learning** of a ANN?

Finding a relationship between a set of data X and a set of data Y,

by solving a **nonlinear regression problem**:

Minimization of a loss function

$$\min_{\theta} \frac{1}{2} \sum_{i=1}^{L} \|\Phi_{\theta}(X_i) - Y_i\|^2$$

Update of the parameters of the neural network,

by using a stochastic gradient approach:

$$\theta^{k+1} = \theta^k - \nu \frac{\partial \Phi_{\theta}}{\partial \theta} (\Phi_{\theta}(X_k) - Y_k)$$
Back propagation computation (Le Cun et al., 1989)

An example in natural hazard monitoring: **Data-based wildfire ignition location**

Direct learning of the inverse function based on snapshots of sensor outputs

L. Barbance, S. Benkaddour, S. Drissi, D. Georges, 2019

y=temperature measurements

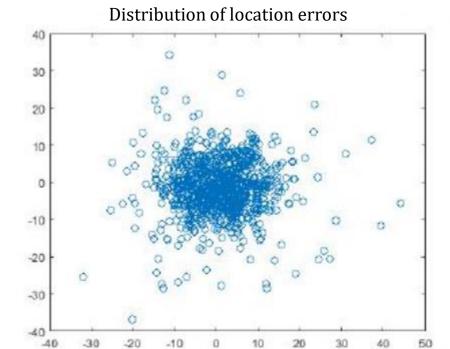
p = fire start location

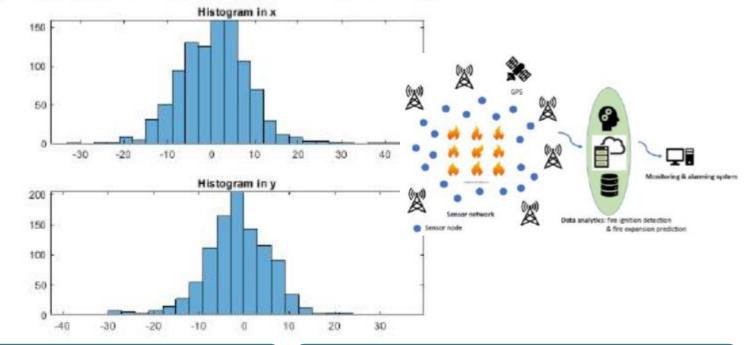
Google images

Inverse function

 $p=\mathcal{F}(y)$

Convolutional Neural Network





85 % of location errors < 10 m With 30 sensors scattered on a cell [500m, 500m] Learning with synthetic data obtained from model simulations

From **data-based** machine learning to **physics-informed** machine learning

• Bringing together the "best of the two worlds" of modelling:

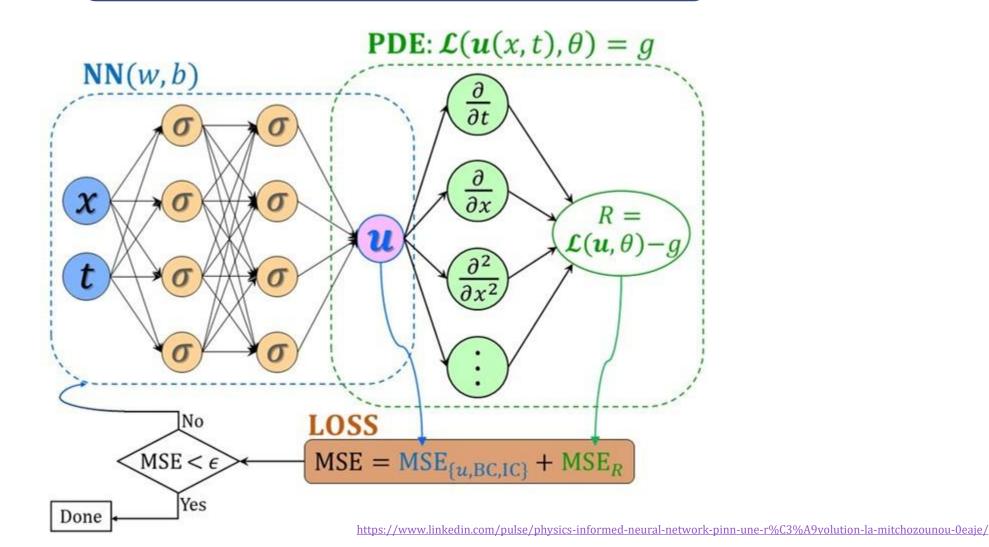
 The data is used to "enrich" the solution derived from a deep neural network

But the solution complies with the laws of physics

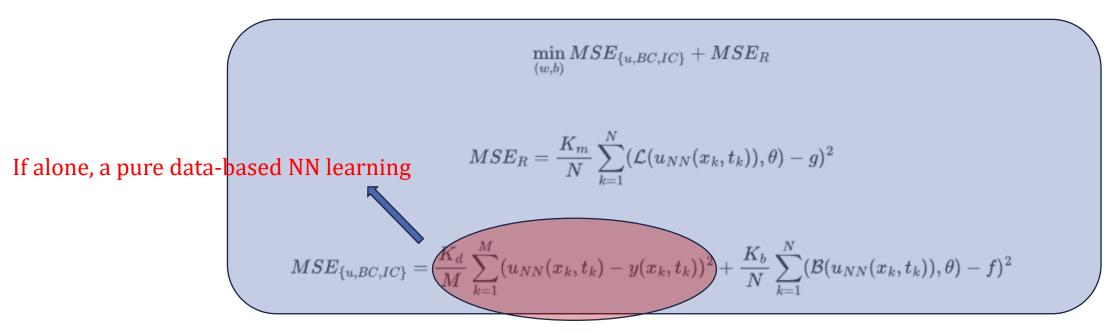
What is a **Physics-Informed Neural Network** (PINN)?

(*Raissi et al., 2019*)

The physical model is now included in the loss function



Mathematical formulation of PINNs



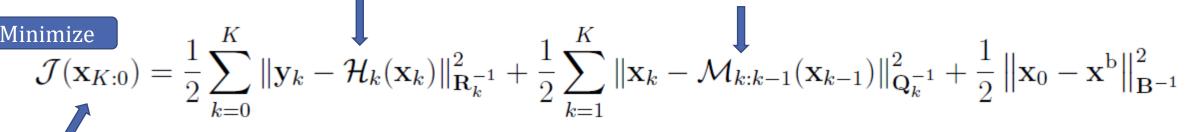
 $y(x_k, t_k)$ is an observable (solution of the PDE obtained from real data and/or simulations).

 u_{NN} is the approximation produced by the neural network.

Data assimilation (estimation of the parameters heta and u(x,t) without knowing the initial state u(x,0)) can be solved by considering

A direct link with the classical data assimilation approach

Similar to MSE_R



State at time K

$$\mathbf{x}_k = \mathcal{M}_{k:k-1}(\mathbf{x}_{k-1}, \boldsymbol{\lambda}) + \boldsymbol{\eta}_k$$
 [
 $\mathbf{y}_k = \mathcal{H}_k(\mathbf{x}_k) + \boldsymbol{\epsilon}_k$

Dynamical model

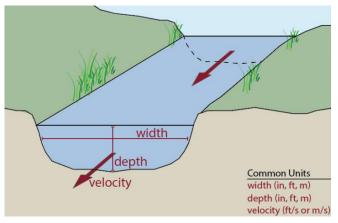
Sensor model

A case study - DT for flood monitoring based on a 1D runoff model

A simplification of shallow water equations:

The kinematic wave equation

Guadalupe flash flood – Texas, July 2025 – abc news



Google images

Physical model

$$lphaeta Q(x,t)^{eta-1}rac{\partial Q}{\partial t}(x,t)+rac{\partial Q}{\partial x}(x,t)=0, x\in [0,L], t\in (0,T),$$
 $Q(x=0,t)=f(t)\ (BC),$ $Q(x=0,t)=Q_0(x)\ (IC)$

Q(x,t) is the water flow rate, as a function of space coordinate x and time t.

$$eta=0.6$$
 and $lpha=\left(rac{nb^{2/3}}{\sqrt{S_0}}
ight)^{3/5}$

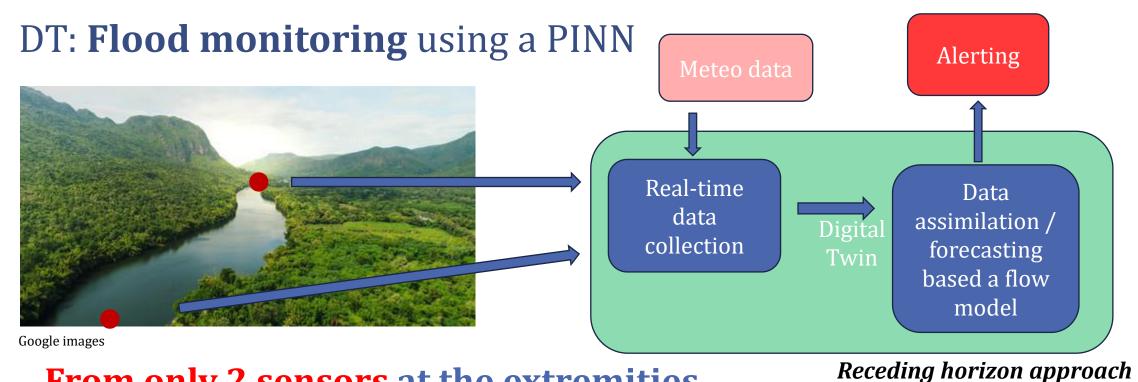
n is a roughness coefficient, b is the width of the channel, S_0 is th slope of the channel,

f(t) is the upstream flow rate defining the boundary condition, and $Q_0(x)$ is the initial flow rate distribution.

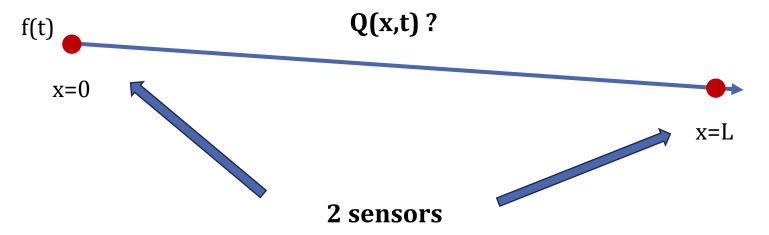
Data: Flow rate

$$y_i^Q(t) = Q(x = x_i^s, t)$$

 x_i^s is the location of the sensor i

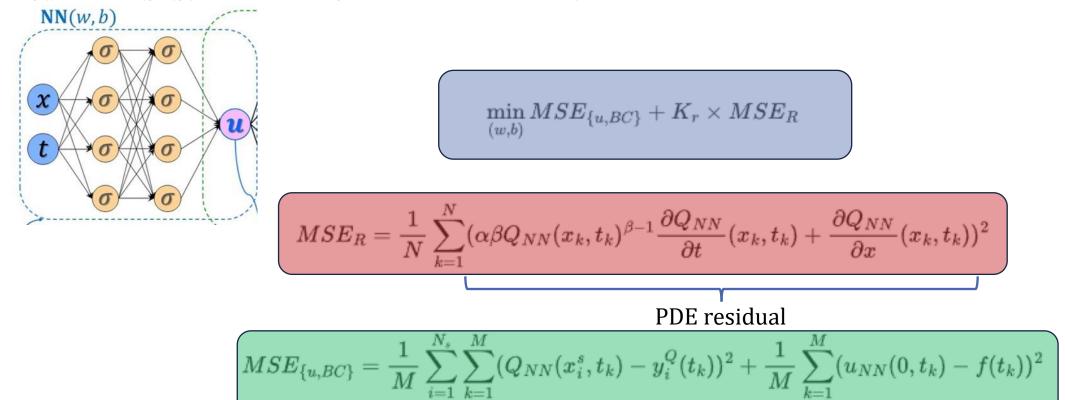


From only 2 sensors at the extremities, Receding can we estimate the flow rate Q(x,t) for all x and t?



PINN formulation for flood monitoring

https://www.linkedin.com/pulse/physics-informed-neural-network-pinn-une-r%C3%A9volution-la-mitchozounou-0eaje/



Data sensor fitting term

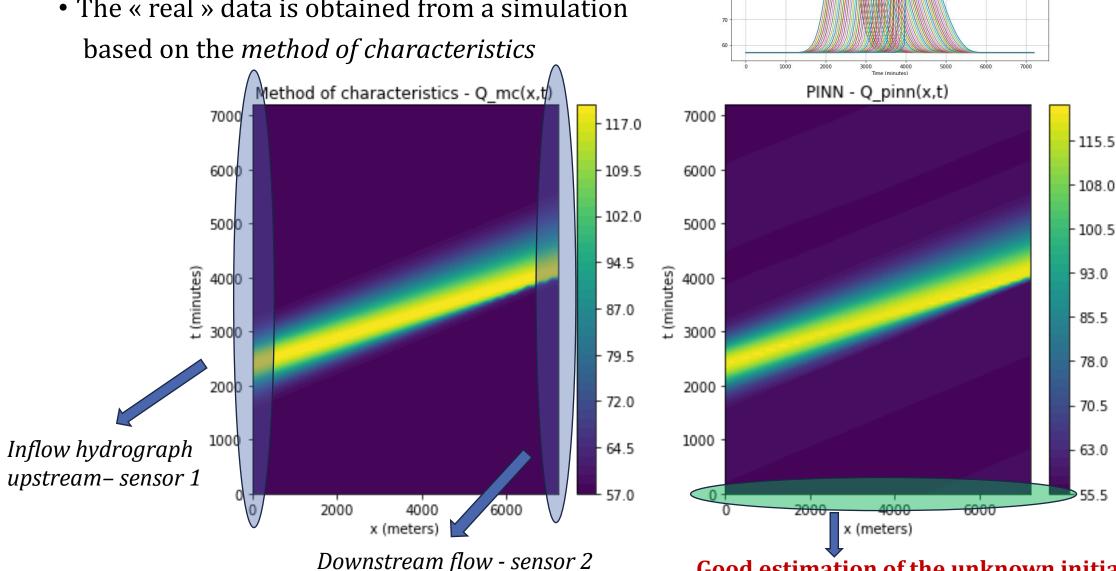
BC residual

NN: 1 hidden layer with 100 neurons

Results

Channel of 7200m with width of 60m, Gaussian distribution of the inflow hydrograph

• The « real » data is obtained from a simulation



Good estimation of the unknown initial state!

Conclusions

 Machine learning is set to play an important role in the development of digital twins:

The synergy between models and data is facilitated by PINNs: Multi resolution, no need for adjoint system calculation, meshless approach, complexity independent of dimensions...

• Many challenges remain, amongst them:

Efficient learning of parametrized solutions for complex physical models:

high-dimensional simulation/estimation problem for a variety of data and parameters,

very heterogeneous domains (many internal BCs),

improvement through optimal sensor location ...

Thank you for your attention!

