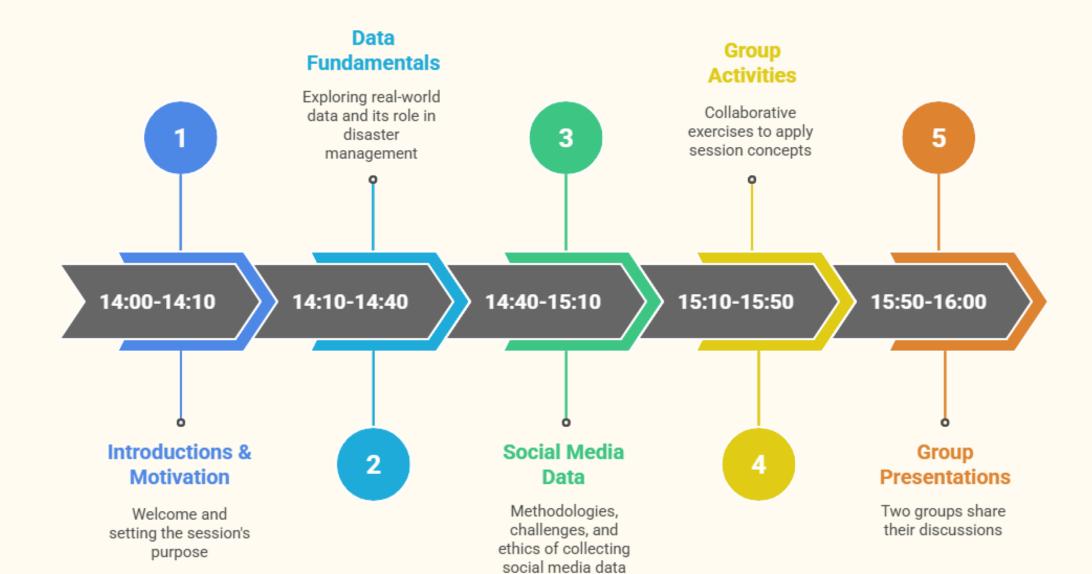
Data collection methodologies, processes, and ethical considerations within current digital environments

Dr Nicholas Micallef, Swansea University **Dr Rouba Iskandar**, LIG



RISK Summer School 2025

Introductions and Motivation

Dr Nicholas Micallef

Senior Lecturer in Computer Science

Research areas:

- Human-Computer Interaction (HCI)
- Usable Security
- Social Media Analysis for Misinformation/Disinformation
- Human-Centered Al

Dr Rouba Iskandar

Postdoctoral researcher in Computer Science

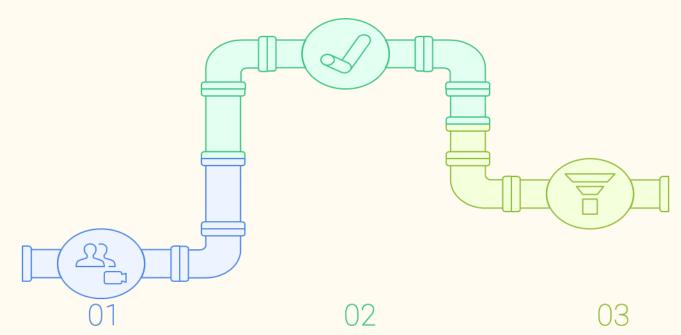
Research areas:

- Natural hazards
- Seismic risk modeling
- Human behavior in crisis
- Agent-based modeling and simulation

RISK Summer School 2025

Data- From real-world observations to disaster management

What did we learn from the blast?



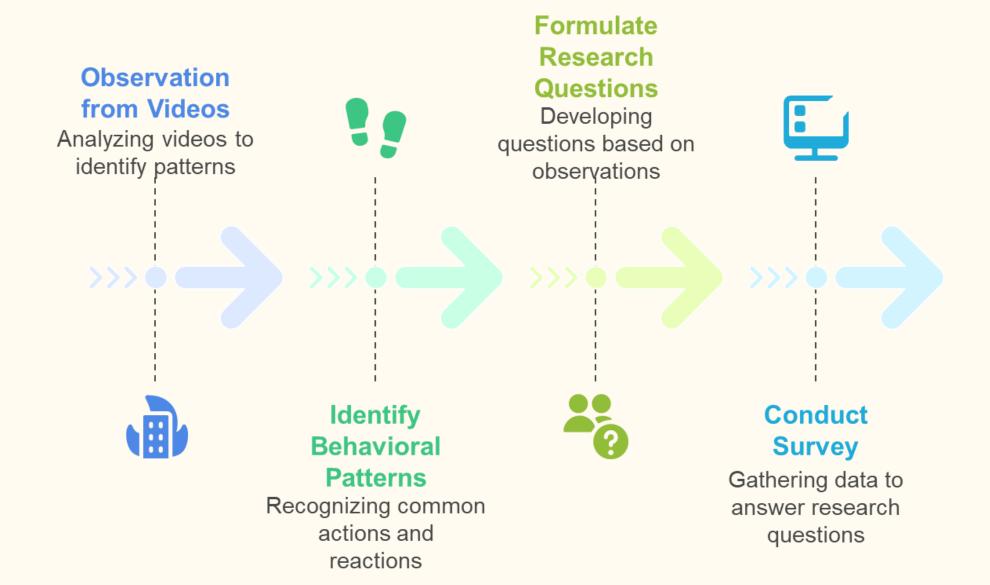
- Disasters generate realtime, human centered data
- Videos capture movement, reactions, before official reports

Turning Observation into Research: A Data Pipeline

Observation from Videos

Initial data collection through video analysis

Designing a Survey


Creating a survey to gather additional data

Informing an Agent-Based Model

Using collected data to develop a model

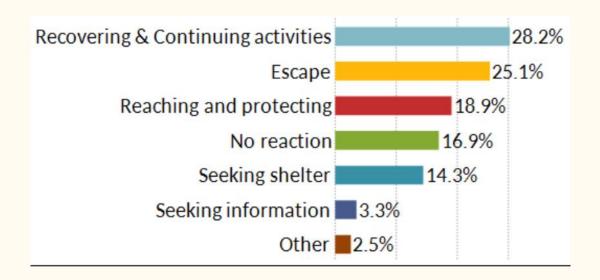
Step 1: Observation from Videos

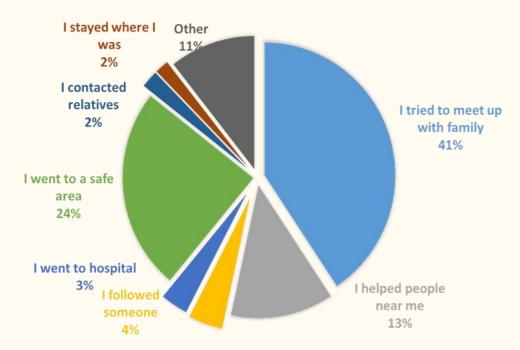
Step 2: Designing a Survey

First Reaction Question

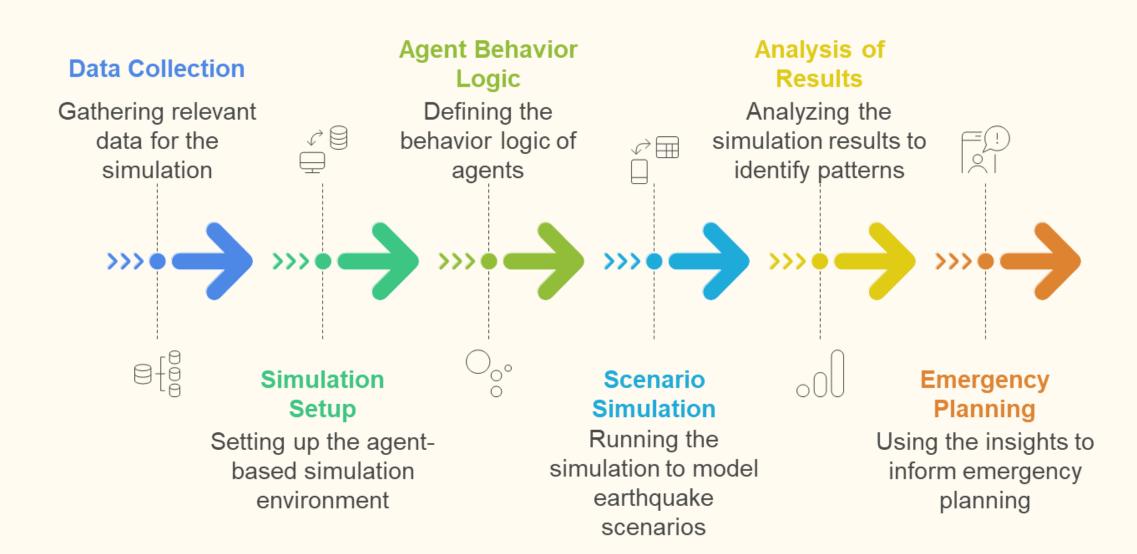
Reveals immediate responses, crucial for understanding behavior.

Movement Choice Question

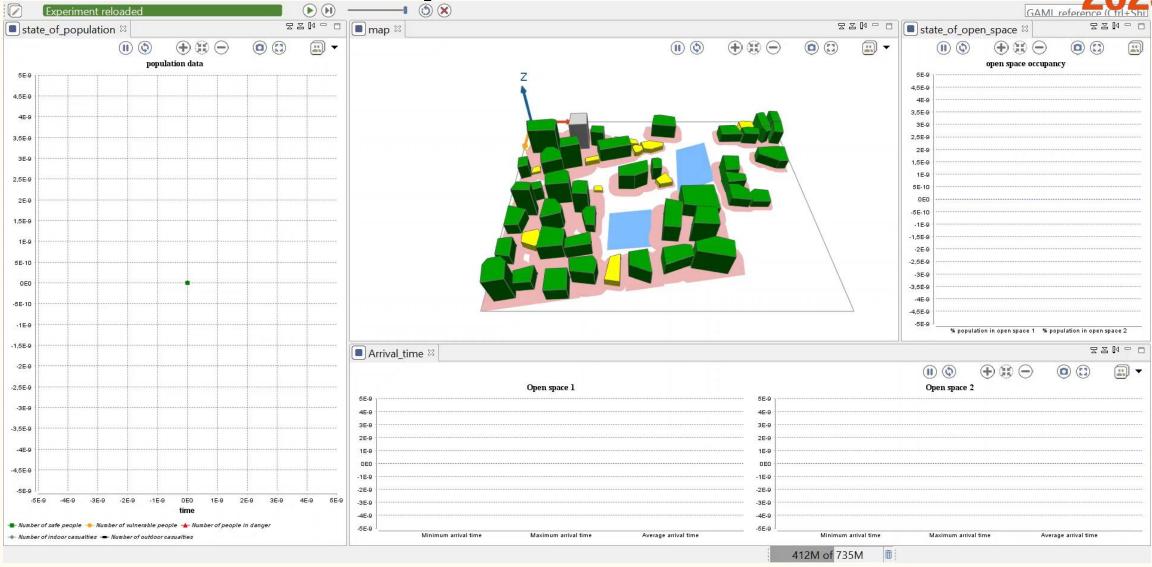

Explores decision-making processes during the event, reflecting real actions.



Reactions to the explosion – Indoor N= 482



Reactions to the explosion – Outdoor N= 192



Step 3: Informing an Agent-Based Model

Simulation example

School

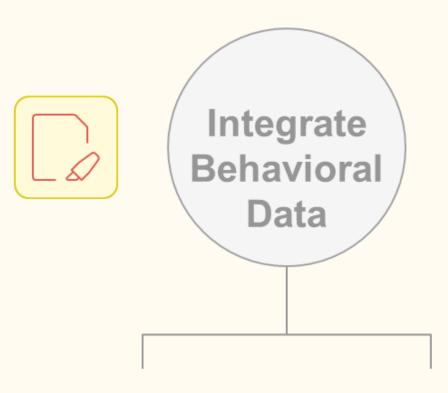
What-Ifs: Using Simulations to Shape Policy School 2025

Early Flood Warning

Test different timings to optimize safety outcomes.

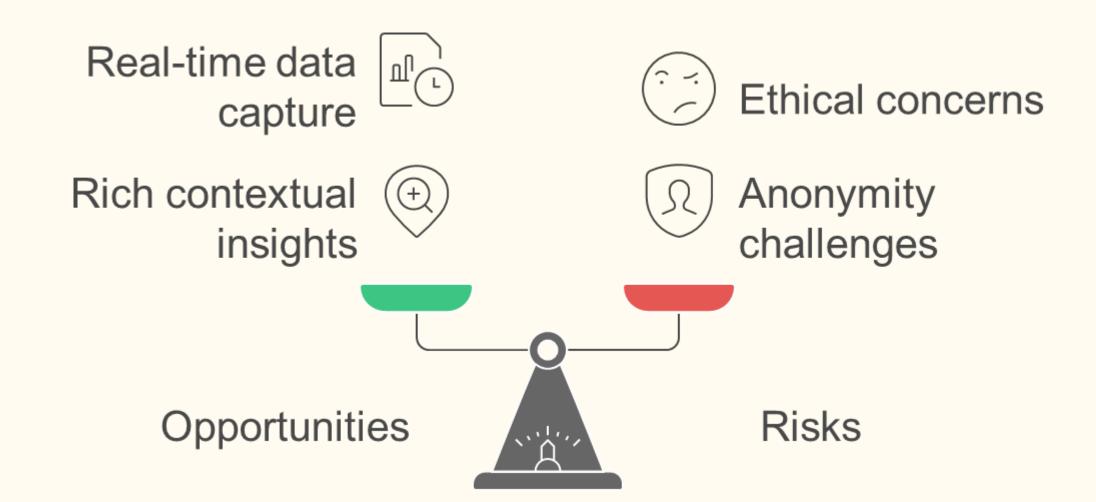
Urban Planning for Earthquakes

Evaluate the impact of replacing unsafe buildings with safe spaces.


Fire Mitigation Strategies

Assess the effectiveness of firebreaks and evacuation routes.

Incomplete
Disaster Models
Lacking behavioral data
insights


Improved Disaster Response Predict movement, design strategies

Videos and surveys gathered

Quantitative models are created

RISK Summer School 2025

Social Media Data
Collection: Methodologies,
Challenges, and Ethics

Unique insights during uncertain times

Real-time Content

User-generated content updated instantly

Big Data Characteristics

Volume, velocity, variety, veracity, value

Diverse Perspectives

Varied viewpoints offering broad insights

Social Listening Tools

Commercial or academic platforms for social data analysis.

Manual Collection

Best for small-scale, qualitative data gathering.

API Access

needs.

Structured and legitimate, ideal for platform-approved data collection.

API Access

What is API

Definition of Application Programming Interface. Controlled gateway to platform data.

Why Use API

Structured and legitimate access. Platform approved data access.

API Examples

Examples include Twitter/X, YouTube, and Facebook APIs.

API Limitations

Rate limits, data sampling, and policy changes.

Definition: Programmatically extracting data directly from websites.

Challenges due to website changes

Terms of Service Violation

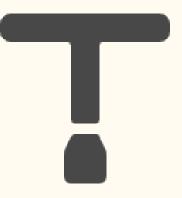
The act of breaking website rules

Ethical Concerns

Moral considerations in data extraction

Legal Concerns

Potential legal issues arising from scraping



What

Platforms that aggregate and analyse social media data.

Function

Use API access to provide advanced analytics.

Use Case

Large-scale monitoring, brand management, market research.

Examples

Brandwatch, Meltwater, Sprinklr.

Manual Collection

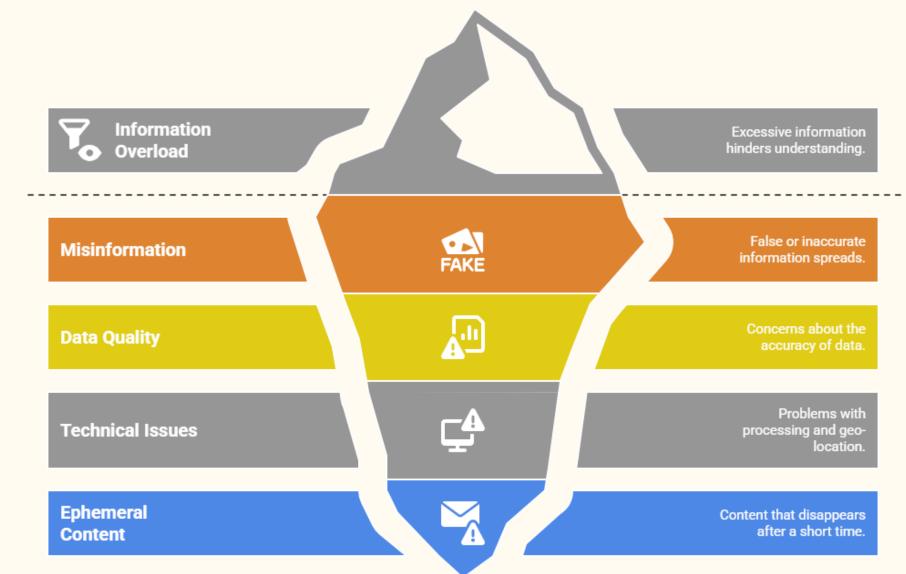
What

Direct observation and recording of posts, comments, or interactions.

Best For

Small-scale, in-depth qualitative studies.

Focus


Understanding context, nuance, and specific community dynamics.

Limitation

Not scalable for "Big Data" analysis.

Challenges & Barriers: Platform-Specific

Analyzing videos, bias in algorithms, extracting data.

Twitter Challenges

API limitations, bot presence, verifying information.

WhatsApp Challenges

Encryption methods, user privacy, user consent.

X/Twitter (Example)

SPRINGER NATURE Link		Log in
Find a journal Publish with us Track your research Q Search	Ė	? Cart
Home > Social Networks Analysis and Mining > Conference paper Dissecting the Advocacy Discourse Behind the #StopAsianHate Movement on X/Twitter Conference paper First Online: 24 January 2025 pp 211−229 Cite this conference paper Access provided by Swansea University / Prifysgol Abertawe Download book PDF Download book EPUB Download book EPUB	Social Networks Analysis and Mining Social Networks Analysis and Mining (ASONAM 2024)	g
Yuze Sha, Nicholas Micallef	Sections Figures References	
Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15213))	Abstract Keywords	
Included in the following conference series: International Conference on Advances in Social Networks Analysis and Mining	Introduction Related Work	
	Methodology	

WhatsApp (Example)

16

Automating Data Collection from Public WhatsApp Groups

Challenges and Solutions

NICHOLAS MICALLEF, MUSTAQUE AHAMAD, NASIR MEMON, AND SAMEER PATIL

The WhatsApp messaging service is one of the most popular mediums for broadening the reach of information dissemination (Srivastava and Singh 2021). Unlike other messaging platforms, the collection of realworld messaging data from WhatsApp is challenging and complicated because of end-to-end encryption, closed source code, and lack of publicly accessible application programming interfaces (APIs). Researchers have used two main ways to circumvent these issues and collect information propagated via WhatsApp: (1) setting up a dedicated WhatsApp number to which people can forward information and (2) joining public WhatsApp groups connected to information about topics of interest (e.g., health, elections, etc.). The latter of the two approaches has been the most popular technique reported in prior work involving WhatsApp data (Garimella and Tyson 2018; Melo et al. 2019; Reis et al. 2020; Resende et al. 2019b). However, such an approach requires considerable manual labor to curate the data collection (Melo et al. 2019; Reis et al. 2020), limiting the scale of the data collection efforts. In our research, we addressed the challenge of scale by investigating the barriers to automating data collection from public WhatsApp groups.

To achieve our research goals, we began with an exploratory investigation with one mobile device that the lead researcher used to manually discover, join, and observe the activities of several public WhatsApp groups. During this initial exploration, we uncovered various challenges that we classified into five broad categories: group discovery, group

RISK Summer School 2025

Privacy & Ethical Considerations

Balancing Public Good

Weighing societal benefits against individual privacy

616

RISK Summer School 2025

Best Practices

Implementing ethical data management strategies

Informed Consent

Ensuring users understand data usage

Potential for Harm

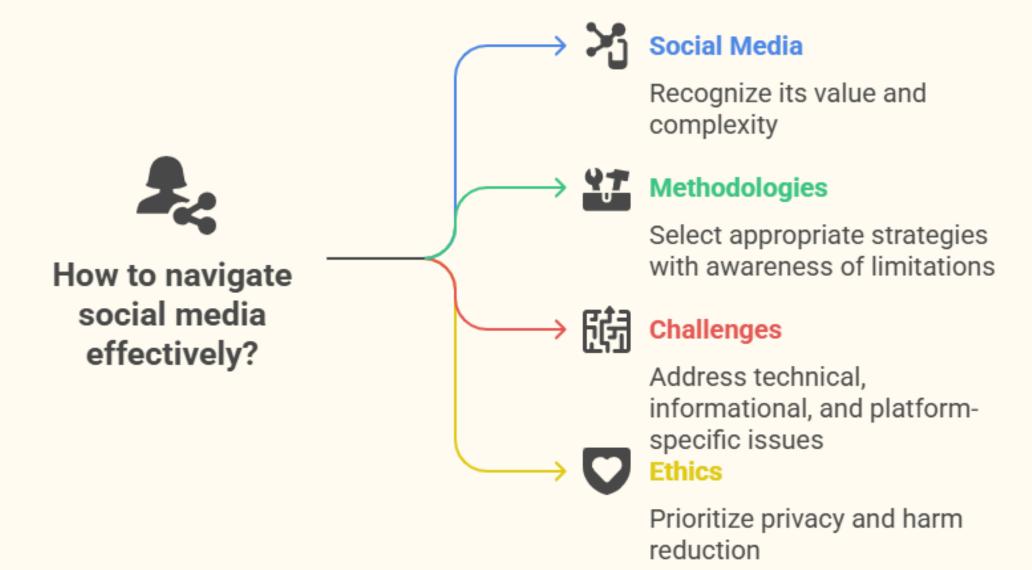
Preventing negative impacts on individuals

Privacy Expectations

Recognizing diverse privacy needs across platforms

й. Б.Т

Anonymization Challenges


Overcoming difficulties in data protection

Data Ownership

Defining rights and responsibilities

Group Activities

Group Activities

Activity 1: Disaster Scenario - Data Collection Strategy Activity 2: Ethical Dilemmas in Social Media Data

Activity 3: Platform-Specific Data Challenges Activity 4:
Misinformation and
Data Veracity

Activity 5: Designing a Consent Process for Citizen Data (Social Media Focus)

Activity 6: Data for Decision-Making:
Bridging the Gap

Activity 7: The Future of Social Media Data in Disaster Research

Activity 8: Designing a "Rapid Response" Survey

Activity 9: "What If?" -Brainstorming for an Agent-Based Model

Activity 1: Disaster Scenario - Data Collection Strategy

- Scenario: A sudden, major earthquake has just struck a densely populated urban area. Communication lines are partially down, but social media (Twitter/X, TikTok, Facebook) is buzzing with activity.
- **Task:** As a research team, outline a high-level strategy for collecting social media data to understand the immediate impact and needs.
 - What platforms would you prioritize and why?
 - What keywords/hashtags would you track?
 - What types of data would you aim to collect (e.g., text, images, location)?
 - What are the immediate challenges you anticipate in collecting this data in realtime?
- Discussion Prompt: How would your strategy change if the disaster was a slow-onset event like a prolonged drought?

Activity 2: Ethical Dilemmas in Social Media Data

- Scenario: You've collected a large dataset of public tweets related to a recent flood, including some highly emotional and personal accounts from individuals seeking help or expressing distress. Your research aims to map affected areas and identify unmet needs.
- Task: Discuss the ethical considerations involved in using this data.
 - How do you balance the potential for public good (identifying needs) with individual privacy?
 - What steps would you take to anonymize or protect sensitive information?
 - Is it ethical to use data from individuals who might be in a vulnerable state and not fully aware their public posts are being collected for research?
 - What are your responsibilities if you come across direct pleas for help or evidence of harm?
- **Discussion Prompt:** Should researchers be held to a higher ethical standard than news organizations or aid agencies when using public social media data during a crisis?

Activity 3: Platform-Specific Data Challenges

- Scenario: Your team wants to understand public sentiment and information flow during a public health crisis using social media. You decide to look at TikTok, Twitter/X, and WhatsApp.
- Task: For each platform, identify one unique challenge in data collection and suggest a potential (even if partial) solution or mitigation strategy.
 - **TikTok:** (e.g., analyzing video content, trends)
 - Twitter/X: (e.g., API limitations, bot activity, misinformation)
 - WhatsApp: (e.g., privacy/encryption, group dynamics, consent)
- **Discussion Prompt:** Which platform do you think is the most challenging for systematic data collection in a crisis, and why?

Activity 4: Misinformation and Data Veracity

- **Scenario:** During a rapidly unfolding event, your social media monitoring identifies several viral posts that appear to be false or misleading (e.g., incorrect evacuation routes, unverified claims of casualties).
- Task: Discuss how you, as a data collector/analyst, would handle this misinformation within your dataset.
 - How would you identify and flag potentially false information?
 - What are the risks of including or excluding such data from your analysis?
 - What responsibility, if any, do researchers have in combating misinformation during a crisis?
- **Discussion Prompt:** How can collaboration between researchers, social media platforms, and official agencies help address the spread of misinformation during disasters?

Activity 5: Designing a Consent Process for Citizen Data (Social Media Focus)

- Scenario: You are planning a research project that involves collecting social media data from a specific community affected by a long-term environmental issue. You want to ensure ethical data collection and gain informed consent where possible.
- Task: Design a simplified "consent process" for social media data collection in this context.
 - What information would you need to provide to potential participants?
 - How would you attempt to obtain consent (e.g., direct messaging, community meetings, platform-specific features)?
 - What are the limitations of obtaining consent for publicly available social media data?
- **Discussion Prompt:** When is it *not* necessary to obtain individual consent for social media data, and what are the ethical justifications for that?

Activity 6: Data for Decision-Making: Bridging the Gap

- Scenario: You've successfully collected and analysed social media data related to a recent localized flood, identifying areas with significant damage and immediate needs for shelter and medical aid.
- Task: How would you present this data to decision-makers (e.g., local government, NGOs) to ensure it is actionable and effectively informs their response?
 - What format would be most effective (e.g., maps, dashboards, brief reports)?
 - What key insights would you highlight?
 - What caveats or limitations of the social media data would you need to communicate?
- **Discussion Prompt:** What are the biggest barriers to translating social media data insights into effective real-world decisions during a crisis?

Activity 7: The Future of Social Media Data in Disaster Research

- **Scenario:** Imagine it's 2035. New social media platforms have emerged, and AI capabilities for data analysis are far more advanced.
- Task: Brainstorm how social media data collection and its use in disaster management might evolve.
 - What new opportunities might arise (e.g., predictive analytics, automated needs assessment)?
 - What new ethical or technical challenges might emerge?
 - How might the role of citizen data collectors change?
- **Discussion Prompt:** What single technological advancement related to social media data would have the most significant positive impact on disaster response and decision-making?

Activity 8: Designing a "Rapid Response" Survey

• **Scenario:** A major flash flood has just occurred in a city centre. Your team has seen dozens of TikTok and Twitter videos showing people trapped in cars, wading through water, and helping each other. Now, you need to design a survey to systematically collect data from affected individuals to understand their decision-making.

Task:

- Based on the scenario, identify three key behavioural themes you would want to investigate (e.g., "Decision to evacuate," "Choice of shelter," "Pro-social behaviour like helping others").
- For each theme, write two well-formulated survey questions that could be deployed digitally (e.g., via SMS or a web link) to the affected population. The questions should be clear, concise, and aim to capture specific behaviors or decisions.
- Example for "Pro-social behaviour":
 - "During the flood, did you actively help someone you didn't know? (Yes/No/I was not in a position to help)."
 - "If you saw someone in need of help, what was the biggest factor that influenced your decision to assist or not assist? (e.g., Personal safety, Lack of skills, Assumed someone else would help, etc.)."
- **Discussion Prompt:** What are the biggest challenges in deploying a survey in the immediate aftermath of a disaster, and how might you overcome them?

Activity 9: "What If?" - Brainstorming for an Agent-Based Model

• **Scenario:** Your team has successfully collected and analysed survey data on how people behaved during a recent earthquake. You found that 70% of people hesitated for more than 30 seconds before moving, and 40% tried to use the main stairwell instead of emergency exits.

Task:

You are now advising a team building an agent-based model to simulate evacuations.

- Based on the findings above, brainstorm three "what if" scenarios that the model could test to improve safety.
- For each scenario, describe the change you would make in the simulation and what outcome you would measure.
- Example Scenarios:
 - Scenario 1: "What if a new public address system reduces hesitation time from 30 seconds to 5 seconds? How does that affect building evacuation time and congestion at exits?"
 - Scenario 2: "What if the main stairwell is blocked in the simulation? Where do the 40% of people go, and what new bottlenecks are created?"
 - Scenario 3: "What if we add 'helper' agents who guide others to emergency exits? How many 'helper' agents are needed to significantly change the flow of people away from the main stairwell?"
- **Discussion Prompt:** "The data you collect today becomes the simulation that shapes tomorrow's disaster response." What is the biggest ethical responsibility a researcher has when their data is used to make real-world policy decisions?